Р.Н. Аляутдин

ФАРМАКОЛОГИЯ

Ultra light

УЧЕБНОЕ ПОСОБИЕ

2-е издание, исправленное и дополненное

ОГЛАВЛЕНИЕ

Список сокращений и условных обозначений	13
От автора	15
Введение	17
Названия лекарственных средств	18
ЧАСТЬ 1. ОБЩАЯ ФАРМАКОЛОГИЯ	19
Глава 1. Фармакокинетика	21
1.1. Всасывание и пути введения лекарственных веществ	21
Всасывание	21
Пути введения лекарственных веществ	27
1.2. Распределение	30
1.3. Депонирование	
1.4. Биотрансформация	
1.5. Выведение	
Глава 2. Фармакодинамика	38
2.1. Фармакологические эффекты, локализация и механизмы	
действия лекарственных веществ	38
Фармакологические эффекты лекарственного вещества	
Механизмы действия лекарственных веществ	39
2.2. Виды действия лекарственных веществ	45
Глава 3. Влияние различных факторов на фармакодинамику	
и фармакокинетику лекарственных веществ	
3.1. Свойства лекарственных веществ	
3.2. Свойства организма	
3.3. Режим назначения лекарственных средств	
3.4. Эффекты повторного применения лекарственных веществ	
Кумуляция	
Сенсибилизация	
Привыкание	
Лекарственная зависимость	53
3.5. Комбинированное применение и взаимодействие	
лекарственных веществ	
Взаимодействие лекарственных веществ	
Комбинированное применение лекарственных средств	55

ЧАСТЬ 2. ЧАСТНАЯ ФАРМАКОЛОГИЯ	57
НЕЙРОТРОПНЫЕ СРЕДСТВА	59
СРЕДСТВА, ВЛИЯЮЩИЕ НА ПЕРИФЕРИЧЕСКУЮ НЕРВНУЮ СИСТЕМУ	59
СРЕДСТВА, ДЕЙСТВУЮЩИЕ НА АФФЕРЕНТНОЕ ЗВЕНО ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ	
Глава 4. Средства, угнетающие афферентную нервную систему	61
4.1. Местные анестетики	
и проводниковой анестезии	
Средства, применяемые для всех видов анестезии	
4.2. Вяжущие, обволакивающие и адсорбирующие средства	
Вяжущие средства	
Адсорбирующие средства	
Глава 5. Средства, стимулимующие окончания афферентных нервов	
5.1. Раздражающие средства.	
СРЕДСТВА, ДЕЙСТВУЮЩИЕ НА ЭФФЕРЕНТНОЕ ЗВЕНО	
ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ	75
Глава 6. Средства, действующие на холинергические синапсы	
6.1. Средства, стимулирующие холинергические синапсы	
Холиномиметики	
6.2. Средства, блокирующие холинергические синапсы	
М-холиноблокаторы	
Ганглиоблокаторы	
Средства, блокирующие нервно-мышечные синапсы	
Глава 7. Средства, действующие на адренергические синапсы	
Адреномиметики	
Симпатомиметические средства (симпатомиметики,	
адреномиметики непрямого действия)	
7.2. Средства, блокирующие адренергические синапсы	
Адреноблокаторы	
Симпатолитики	.13/
СРЕДСТВА, ДЕЙСТВУЮЩИЕ НА ЦЕНТРАЛЬНУЮ НЕРВНУЮ	4.40
СИСТЕМУ	
Моноамины	

Аминокислоты	
Пептиды	
Глава 8. Средства для наркоза (общие анестетики)	
8.1. Средства для ингаляционного наркоза	
8.2. Средства для неингаляционного наркоза	152
Глава 9. Спирт этиловый	156
Глава 10. Снотворные средства	159
10.1. Снотворные средства с ненаркотическим типом действия	
Агонисты бензодиазепиновых рецепторов	
10.2. Снотворные средства с наркотическим типом действия	
Производные барбитуровой кислоты (барбитураты)	166
Алифатические соединения	169
Глава 11. Противоэпилептические средства	170
11.1. Средства, повышающие эффективность гамма-аминомасляной	
кислоты	171
Барбитураты	171
Бензодиазепины	174
Препараты других групп	175
11.2. Блокаторы натриевых каналов	176
11.3. Блокаторы кальциевых каналов Т-типа	178
Глава 12. Противопаркинсонические средства	181
12.1. Средства, стимулирующие дофаминергическую передачу	
Предшественники дофамина	186
Ингибиторы катехол-О-метилтрансферазы	
Ингибиторы моноаминоксидазы В	
Средства, повышающие выделение дофамина	
Агонисты дофаминовых рецепторов	
12.2. Средства, угнетающие холинергическую передачу	191
Глава 13. Аналгезирующие средства (аналгетики)	
13.1. Средства преимущественно центрального действия	195
Опиоидные (наркотические) аналгетики	
Неопиоидные препараты с анальгетической активностью	205
Аналгетики со смешанным механизмом действия	
(опиоидный и неопиоидный компоненты)	206
13.2. Аналгезирующие средства преимущественно	
периферического действия (нестероидные противовоспалительные	
средства)	207
Глава 14. Психотропные средства	
14.1. Антипсихотические средства	210
Типичные антипсихотические средства	
Атипичные антипсихотические средства	217

6 Оглавление

14.2. Антидепрессанты	
Ингибиторы нейронального захвата моноаминов	
Ингибиторы моноаминоксидазы	225
Антидепрессанты из других групп	226
14.3. Нормотимические средства (соли лития)	226
14.4. Анксиолитические средства (транквилизаторы)	228
Производные бензодиазепина	228
Производные азаспиродекандиона	231
Транквилизаторы других химических групп	231
14.5. Седативные средства	
14.6. Психостимуляторы	232
14.7. Ноотропные средства	235
Глава 15. Аналептики	237
ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА ФУНКЦИИ	
ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ И СИСТЕМ	239
Глава 16. Средства, влияющие на систему органов дыхания	
16.1. Стимуляторы дыхания	
Стимуляторы дыхания центрального типа действия	
Стимуляторы дыхания центрального типа действия Стимуляторы дыхания рефлекторного типа действия	
Стимуляторы дыхания смешанного типа действия	
16.2. Отхаркивающие средства	
Секретомоторные средства	
Муколитические средства	
16.3. Противокашлевые средства	
Противокашлевые средства	
Противокашлевые средства центрального действияПротивокашлевые средства периферического действия	
16.4. Средства, применяемые при бронхиальной астме	
Бронхолитические средства	230
Средства с противовоспалительным и противоаллергическим	252
действием	
Средства с антилейкотриеновым действием	
16.5. Препараты сурфактантов	237
СРЕДСТВА, ВЛИЯЮЩИЕ НА СЕРДЕЧНО-СОСУДИСТУЮ	
СИСТЕМУ	259
Глава 17. Антиаритмические средства	
17.1. Класс I — блокаторы натриевых каналов	
17.2. Класс II — β -адреноблокаторы	273
17.3. Класс III — блокаторы калиевых каналов	
17.4. Класс IV — блокаторы кальциевых каналов	276

17.5. Другие средства, применяемые при тахиаритмиях
и экстрасистолии278
Сердечные гликозиды
Препараты калия и магния
Глава 18. Средства, применяемые при недостаточности коронарного
кровобращения
18.1. Средства, применяемые при стенокардии (антиангинальные
средства)
Средства, уменьшающие потребность миокарда в кислороде
и повышающие доставку кислорода
Средства, понижающие потребность миокарда в кислороде292
Средства, повышающие доставку кислорода к миокарду294
Кардиопротекторные средства
18.2. Средства, применяемые при инфаркте миокарда
Глава 19. Средства, применяемые при артериальной гипертензии
(антигипертензивные средства)
19.1. Антигипертензивные средства нейротропного действия 301
Средства, понижающие тонус вазомоторных центров
Ганглиоблокаторы
Симпатолитики
Средства, блокирующие адренорецепторы
19.2. Средства, снижающие активность ренин-ангиотензиновой
системы
Ингибиторы ангиотензинпревращающего фермента310
Блокаторы ангиотензиновых рецепторов 1 типа (АТ ₁ -рецепторов) 311
19.3. Антигипертензивные средства миотропного действия
Блокаторы кальциевых каналов
Активаторы калиевых каналов
Донаторы оксида азота
Разные миотропные препараты
19.4. Мочегонные средства (диуретики)
Глава 20. Средства, применяемые при сердечной недостаточности.
Кардиотонические средства
20.1. Средства для лечения хронической сердечной
недостаточности
Средства, влияющие на активность ренин-ангиотензиновой
системы
Диуретики
β-Адреноблокаторы
Кардиотонические средства
20.2. Средства для лечения острой сердечной недостаточности 328

Глава 21. Средства, применяемые при нарушении мозгового	
кровообращения	330
Глава 22. Средства, применяемые при атеросклерозе	332
22.1. Гиполипидемические средства	338
Ингибиторы 3-гидрокси-3-метилглутарил-коэнзим А-редуктазы (статины)	340
Средства, угнетающие всасывание холестерина в кишечнике	
Секвестранты желчных кислот	
Производные фиброевой кислоты (фибраты)	
Препараты никотиновой кислоты (фиоралы)	
22.2. Антиоксиданты	
СРЕДСТВА, ВЛИЯЮЩИЕ НА СИСТЕМУ КРОВИ	347
Глава 23. Средства, регулирующие кроветворение	348
23.1. Стимуляторы эритропоэза	
23.2. Средства, угнетающие эритропоэз	349
23.3. Стимуляторы лейкопоэза	
23.4. Средства, угнетающие лейкопоэз	350
Глава 24. Средства, влияющие на гемостаз и тромбообразование	351
24.1. Средства, снижающие агрегацию тромбоцитов	
(антиагреганты)	
Средства, ингибирующие синтез тромбоксана А2	
Средства, стимулирующие простациклиновые рецепторы	
Средства, препятствующие действию АД Φ на тромбоциты	
Средства, ингибирующие фосфодиэстеразу тромбоцитов	361
Средства, блокирующие гликопротеины IIb/IIIa мембран	
тромбоцитов	
24.2. Средства, влияющие на свертывание крови	363
Средства, понижающие свертываемость крови	265
(антикоагулянты)	
Средства, повышающие свертываемость крови	
24.3. Средства, влияющие на фибринолиз	
Фибринолитические (тромболитические) средства	
Антифибринолитические средства	
Глава 25. Мочегонные средства	380
25.1. Средства, нарушающие функцию эпителия почечных	
канальцев	
Тиазидные и тиазидоподобные диуретики	
Петлевые диуретики	
25.2. Калийсберегающие диуретики	
Антагонисты альдостерона	
25.3. Ингибиторы карбоангидразы	390

25.4. Осмотические диуретики	392
25.5. Метилксантины	393
Глава 26. Средства, влияющие на тонус и сократительную	
активность миометрия	394
26.1. Средства, усиливающие ритмические сокращения	
миометрия	395
26.2. Средства, преимущественно повышающие тонус	
миометрия	397
26.3. Средства, снижающие тонус и сократительную активность	
миометрия	398
26.4. Средства, понижающие тонус шейки матки	
Глава 27. Средства, влияющие на функции органов пищеварения	
27.1. Средства, влияющие на аппетит	
Средства, стимулирующие аппетит	
Средства, угнетающие аппетит (анорексигенные средства)	
27.2. Рвотные и противорвотные средства	
Рвотные средства	
Противорвотные средства.	
27.3. Антацидные и антисекреторные средства	
Антацидные средства	
Антисекреторные средства	
Гастроцитопротекторы	
27.4. Средства, используемые при нарушении экскреторной функции	
желудка, печени и поджелудочной железы	
27.5. Ингибиторы протеолиза	
27.6. Желчегонные средства	
Препараты, стимулирующие желчеобразовательную функцию	
печени (холеретики)	415
Препараты, стимулирующие выведение желчи	418
Гепатопротекторы	419
27.7. Холелитолитические средства	419
27.8. Стимуляторы моторики желудочно-кишечного тракта	
и прокинетические средства	420
27.9. Слабительные средства	421
Средства, вызывающие механическое раздражение рецепторов	
кишечника (солевые слабительные)	422
Средства, раздражающие хеморецепторы кишечника	423
Средства, увеличивающие объем кишечного содержимого	
Средства, смазывающие слизистую оболочку кишечника	
Ветрогонные средства	
27.10. Антидиарейные средства	425

СРЕДСТВА, РЕГУЛИРУЮЩИЕ ПРОЦЕССЫ ОБМЕНА ВЕЩЕСТ	B 427
Глава 28. Препараты гормонов, их синтетических заменителей	
и антагонистов	428
28.1. Гормональные препараты белково-пептидной структуры	
Препараты гормонов гипоталамуса и гипофиза	429
Препараты гормонов эпифиза	
Препараты гормонов, регулирующих обмен кальция	
Тиреоидные гормоны и антитиреоидные средства	
Препараты гормонов поджелудочной железы	
28.2. Гормональные средства стероидной структуры	
Препараты гормонов коры надпочечников, их синтетические	
заменители и антагонисты	457
Препараты половых гормонов, их синтетических заменителей	
и антагонистов	464
Глава 29. Витамины	477
СРЕДСТВА, УГНЕТАЮЩИЕ ВОСПАЛЕНИЕ И РЕГУЛИРУЮЦ	
ИММУННЫЕ ПРОЦЕССЫ	
Глава 30. Противовоспалительные средства	
30.1. Стероидные противовоспалительные средства	
30.2. Нестероидные противовоспалительные средства	
30.3. Медленно действующие противоревматоидные средства	485
Глава 31. Средства, применяемые при подагре	
(противоподагрические средства)	487
Глава 32. Средства, регулирующие иммунные процессы	
(иммунотропные средства)	
32.1. Иммуносупрессоры	490
Цитостатики	491
Препараты глюкокортикоидов	
Селективные ингибиторы синтеза и действия цитокинов	492
32.2. Иммуностимулирующие средства (иммуностимуляторы)	493
Полипептидные иммуностимуляторы эндогенного происхожден	КИ
и их аналоги	
Синтетические иммуностимуляторы	
Препараты микробного происхождения и их аналоги	
Интерфероны	
Индукторы интерферона (интерфероногены)	
Интерлейкины	
Колониестимулирующие факторы	
32.3. Противоаллергические средства	
Антигистаминные средства	
Стабилизаторы мембран тучных клеток	503

Глюкокортикоиды	503
Симптоматические противоаллергические средства	503
ПРОТИВОМИКРОБНЫЕ, ПРОТИВОВИРУСНЫЕ	
И ПРОТИВОПАРАЗИТЕРНЫЕ СРЕДСТВА	505
Глава 33. Антисептические и дезинфицирующие средства	
	500
ХИМИОТЕРАПЕВТИЧЕСКИЕ СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ИНФЕКЦИЯХ	509
Глава 34. Антибактериальные химиотерапевтические средства	510
34.1. Антибиотики	510
β-Лактамные антибиотики	513
Макролиды	522
Линкозамиды	
Аминогликозиды	525
Тетрациклины	528
34.2. Синтетические антибактериальные средства	530
Сульфаниламидные препараты	530
Производные хинолона	535
Производные нитрофурана	538
Производные 8-оксихинолина	539
Производные хиноксалина	539
Оксазолидиноны	
34.3. Противосифилитические средства	541
34.4. Противотуберкулезные средства	542
I группа противотуберкулезных препаратов	544
II группа противотуберкулезных препаратов	546
III группа противотуберкулезных препаратов	548
Глава 35. Противогрибковые средства	549
Глава 36. Противовирусные средства	553
36.1. Средства, нарушающие проникновение вирусов в клетки	
36.2. Средства, нарушающие депротеинизацию вирусов	
36.3. Аномальные нуклеотиды (ингибиторы репликации вирусного	
генома)	555
36.4. Средства, применяемые при ВИЧ-инфекции	
36.5. Интерфероны	557
36.6. Индукторы интерферона	558
Глава 37. Средства для лечения протозойных инфекций	
37.1. Противомалярийные средства	
37.2. Противоамебные средства	
37.3. Средства, применяемые при трихомониазе	

12 Оглавление

37.4. Средства, применяемые при лямблиозе	561
37.5. Средства, применяемые при токсоплазмозе	
37.6. Средства, применяемые при лейшманиозе	
Глава 38. Противогельминтные (противоглистные) средства	563
38.1. Средства, применяемые при кишечных нематодозах	
38.2. Средства, применяемые при кишечных цестодозах	
СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ЗЛОКАЧЕСТВЕННЫХ	
НОВООБРАЗОВАНИЯХ	565
Глава 39. Противоопухолевые средства	
39.1. Цитотоксические средства	
Антиметаболиты	
Алкилирующие средства	
Цитотоксические антибиотики	570
Препараты растительного происхождения (ингибиторы	
микротрубочек)	570
39.2. Гормоны и их антагонисты	
Гормональные средства и их синтетические аналоги	
Антигормональные средства	
39.3. Ферментные препараты	
39.4. Препараты моноклональных антител	573
39.5. Препараты разных групп	574
Предметный указатель	575

Средства, действующие на холинергические синапсы

Локализация холинергических синапсов:

- внутренние органы, получающие постганглионарные парасимпатические волокна;
- вегетативные ганглии;
- мозговой слой надпочечников;
- каротидные клубочки;
- скелетные мышцы.

Передача возбуждения в холинергических синапсах происходит с помощью ацетилхолина.

Этапы синтеза, хранения и высвобождения ацетилхолина одинаковы во всех холинергических нейронах. Специфические эффекты ацетилхолина, опосредуемые через холинергические синапсы, зависят преимущественно от типа синаптических холинорецепторов. Холинергические рецепторы подразделяют на два больших класса.

- Мускариновые холинорецепторы (м-холинорецепторы). Связаны с G-белками. Экспрессируются в синапсах всех парасимпатических и некоторых симпатических постганглионарных волокон, в ганглиях вегетативной нервной системы, в ЦНС.
- Никотиновые холинорецепторы (н-холинорецепторы) лигандзависимые ионные каналы, расположенные на постсинаптической мембране во многих возбуждающих синапсах. Особенно важно упомянуть два типа н-холинорецепторов: в вегетативных ганглиях и скелетных мышцах.

Синтез ацетилхолина происходит в одну стадию из холина и ацетил-коэнзима А (ацетил-КоА) под действием фермента холинацетилтрансферазы.

В ЦНС холин, используемый для синтеза ацетилхолина, поступает из трех источников:

- приблизительно 35—50% холина, образующегося под действием ацетилхолинэстеразы в синаптической щели, транспортируется обратно в окончание аксона. Таким путем образуется почти половина холина, используемого для синтеза ацетилхолина:
- гематоэнцефалический барьер непроницаем для свободного холина, поэтому холин из плазмы крови транспортируется в головной мозг в виде фосфатидилхолина липидов, который затем превращается в свободный холин:

 холин также накапливается в фосфолипидах (ФЛ) в виде фосфорилхолина, который расходуется при необходимости.

Ацетил-КоА для реакции образуется преимущественно путем гликолиза под действием фермента пируватдегидрогеназы.

В цитоплазме ацетилхолин транспортируется в синаптические пузырьки на хранение. $AT\Phi$ аза, транспортирующая протоны в пузырек, обеспечивает энергетические потребности этого процесса.

Транспорт протонов из везикул (т.е. по градиенту концентрации H⁺) сопровождается поступлением ацетилхолина в пузырек (т.е. против градиента концентрации ацетилхолина) через ацетилхолин/H⁺-антипортный канал. Этот антипорт является мишенью для действия некоторых антихолинергических препаратов, например везамикола. Ингибирование антипорта приводит к недостаточному накоплению и высвобождению ацетилхолина.

Наряду с ацетилхолином холинергические пузырьки содержат АТФ и гепарансульфатпротеогликаны. Они оба являются противоионами для ацетилхолина. Нейтрализуя положительный заряд ацетилхолина, эти молекулы распределяют электростатические заряды, препятствуют чрезмерному накоплению ацетилхолина в везикулах (выделяемый АТФ тоже действует как нейромедиатор, воздействуя на пуринергические рецепторы, подавляя высвобождение ацетилхолина и норадреналина из нервных вететативных окончаний).

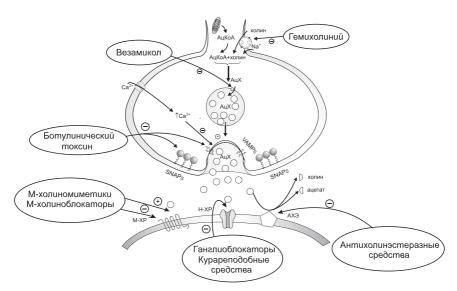
Высвобождение ацетилхолина в синаптическую щель происходит путем слияния синаптического пузырька с плазматической мембраной. Этот процесс зависит от деполяризации аксона и открытия потенциалзависимых кальциевых каналов. Вход кальция запускает каскад механизмов транспортировки везикул к пресинаптической мембране. В этом процессе принимает участие ряд белков. Синапсин — эндогенный мембранный белок, который связывается и с синаптическими везикулами, и с актином. Этот белок связывает везикулы с цитоплазматическим матриксом актина в нервных окончаниях. Поскольку синапсин цамф и Са²+/кальмодулина, считается, что этот вторичный мессенджер влияет на выброс нейромедиаторов, контролируя Cа²+-зависимый экзоцитоз синаптических везикул. Выброс медиатора возможен после слияния мембран везикул и пресинаптического окончания.

Слияние мембран везикул и пресинаптического окончания обеспечивается группой белков SNARE. Синаптобревин (v-SNARE), небольшой белок, прикрепляется к везикулярной мембране посредством гидрофобного С-конца. В пресинаптической мембране находятся 2—3 других белка группы SNARE (t-SNARE, синтаксин, Snap25). Белки v- и t-SNARE соединяются, обеспечивая слияние плазматической и везикулярной мембран, что в результате обеспечивает высвобождение содержимого пузырька в синаптическую щель.

Механизм действия некоторых нейротоксинов, таких как столбнячный или ботулинический токсин, заключается в избирательном разрушении синаптобревина и угнетении экзоцитоза синаптических везикул. Столбнячный токсин выделяется *Clostridium tetani*, нарушает выделение тормозного медиатора глицина, что вызывает рефлекторную гипервозбудимость. Ботулинический токсин выделяется *Clostridium botulinum* и нарушает выделение из пресинаптических окончаний ацетилхолина, что приводит к нарушению сокращения скелетных мышц.

Еще одной важной мишенью для действия лекарственных препаратов является **ацетилхолинэстераза** — фермент, разрушающий ацетилхолин.

На рис. 6.1 представлена схема холинергического синапса.


Ацетилхолин синтезируется в цитоплазме нервных холинергических окончаний, проникает в везикулы и депонируется в них.

В ответ на нервные импульсы мембрана пресинаптического окончания деполяризуется, открываются потенциалзависимые кальциевые каналы, ионы Ca^{2+} поступают в пресинапс.

Ионы кальция с помощью белка синапсина стимулируют транспорт везикул с ацетилхолином к пресинаптической мембране и выделение медиатора в синаптическую щель.

Ацетилхолин возбуждает рецепторы постсинаптической мембраны (холинорецепторы).

В синаптической щели ацетилхолин расщепляется ферментом ацетилхолинэстеразой на холин и уксусную кислоту. Холин подвергается обратному захвату нервными окончаниями (нейрональный захват) и вновь участвует в синтезе ацетилхолина.

Рис. 6.1. Схема холинергического синапса. Локализация действия веществ, влияющих на холинергическую иннервацию: АцХ — ацетилхолин; АцКоА — ацетилкоэнзим А; H-XP — никотиновый холинорецептор; M-XP — мускариновый холинорецептор; АХЭ — ацетилхолинэстераза; SNAPs — *synaptosome-associated proteins*; VAMPs — *vesicle-associated membrane proteins*

На передачу возбуждения в холинергических синапсах могут воздействовать вещества, которые оказывают влияние на следующие процессы:

- синтез ацетилхолина и его депонирование в везикулах;
- высвобождение ацетилхолина;
- взаимодействие ацетилхолина с холинорецепторами;
- гидролиз ацетилхолина в синаптической щели;
- обратный нейрональный захват холина.

Депонирование ацетилхолина в везикулах уменьшает везамикол[©], который блокирует транспорт ацетилхолина из цитоплазмы в везикулы.

Высвобождение ацетилхолина в синаптическую щель стимулирует аминопиридин, а блокирует ботулинический нейротоксин типа А.

Обратный нейрональный захват холина ингибирует гемихолиний®, который блокирует транспортные белки пресинаптической мембраны нервного окончания.

Однако все перечисленные вещества (за исключением препаратов ботулинического токсина) не нашли применения в качестве лекарственных средств.

В медицинской практике в основном используют вещества, которые непосредственно взаимодействуют с холинорецепторами:

- холиномиметики (вещества, стимулирующие холинорецепторы);
 холиноблокаторы (вещества, которые блокируют холинорецепторы и таким образом препятствуют действию на них ацетилхолина).

Применяют также антихолинэстеразные средства — вещества, нарушающие гидролиз ацетилхолина за счет ингибирования ацетилхолинэстеразы.

6.1. СРЕДСТВА, СТИМУЛИРУЮЩИЕ ХОЛИНЕРГИЧЕСКИЕ СИНАПСЫ

В этой группе ЛВ различают:

- холиномиметики вещества, которые непосредственно стимулируют холинорецепторы;
- антихолинэстеразные средства, которые, ингибируя ацетилхолинэстеразу, повышают концентрацию ацетилхолина в синаптической щели и таким образом усиливают и пролонгируют лействие апетилхолина.

ХОЛИНОМИМЕТИКИ

Холинорецепторы разных холинергических синапсов одинаково чувствительны к ацетилхолину, но проявляют неодинаковую чувствительность к другим веществам.

К мускарину (алкалоиду, выделенному из некоторых видов мухоморов) чувствительны рецепторы постсинаптической мембраны клеток эффекторных органов у окончаний постганглионарных парасимпатических волокон. Такие рецепторы называют мускариночувствительными, или м-холинорецепторами.

К никотину наиболее чувствительны холинорецепторы, расположенные на постсинаптической мембране:

- нейронов симпатических и парасимпатических ганглиев;
- хромаффинных клеток мозгового вещества надпочечников;
- каротидных клубочков (расположенных в области деления общих сонных артерий);
- на концевой пластинке скелетных мышц (в нервно-мышечных синапсах).

Такие рецепторы называются никотиночувствительными, или **н-хо-** линорецепторами. Выделяют н-холинорецепторы *нейронального типа* (H_{H}) и н-холинорецепторы *мышечного типа* (H_{M}), различающиеся локализацией (табл. 6.1) и чувствительностью к фармакологическим веществам.

Избирательно блокирующие H_H -холинорецепторы ганглиев, мозгового вещества надпочечников и каротидных клубочков вещества называются *ганглиоблокаторами*.

Вещества, преимущественно блокирующие н_м-холинорецепторы скелетных мышц, называют *курареподобными средствами*.

Среди холиномиметиков выделяют вещества, которые преимущественно стимулируют м-холинорецепторы (м-холиномиметики), н-холинорецепторы (н-холиномиметики) или оба подтипа холинорецепторов одновременно (м-, н-холиномиметики).

Классификация холиномиметиков:

- м-холиномиметики (мускарин, пилокарпин, ацеклидин, цевимелин[®]):
- н-холиномиметики [никотин, цитизин (цититон), лобелин];
- м-, н-холиномиметики [ацетилхолин, карбахол (карбахолин $^{\wp}$)].

Таблица 6.1. Подтипы холинорецепторов и эффекты, вызываемые их стимуляцией

Подтип холинорецепторов	Локализация рецепторов	Эффект, вызываемый стимуляцией холинорецепторов
М-холинорецепторы		
\mathbf{M}_{1}	ЦНС	_

Окончание табл. 6.1

Подтип холинорецепторов	Локализация рецепторов	Эффект, вызываемый стимуляцией холинорецепторов
M ₁	Энтерохромаффиноподобные клетки желудка	Выделение гистамина, стимулирующего секрецию хлористо-водородной кислоты париетальными клетками желудка
M_2	Сердце	Уменьшение частоты сердечных сокращений. Угнетение атриовентрикулярной проводимости. Снижение сократительной активности предсердий
	Пресинаптическая мембрана окончаний постганглионарных парасимпатических волокон	Снижение высвобождения ацетилхолина
М ₃ (иннервируемые)	Круговая мышца радужной оболочки	Сокращение, сужение зрачков
	Цилиарная (ресничная) мыш- ца глаза	Сокращение, спазм аккомодации (глаз устанавливается на ближнюю точку видения)
	Гладкие мышцы бронхов, желудка, кишечника, желчного пузыря и желчных протоков, мочевого пузыря, матки	Повышение тонуса (за исключением сфинктеров) и усиление моторики желудка, кишечника и мочевого пузыря
	Экзокринные железы (бронхиальные железы, железы желудка, кишечника, слюнные, слезные, носоглоточные и потовые железы)	Повышение секреции
${\bf M}_{_3}$ (неиннервируемые)	Эндотелиальные клетки кровеносных сосудов	Выделение эндотелиально- го релаксирующего фактора (NO), который вызывает рас- слабление гладких мышц со- судов
	Н-холинорецепторы	I
$H_{_{M}}$	Скелетные мышцы	Сокращение скелетных мышц
$H_{_{\rm H}}$	Вегетативные ганглии	Возбуждение ганглионарных нейронов
	Энтерохромаффинные клетки мозгового вещества надпочечников	Секреция адреналина и норадреналина
	Каротидные клубочки	Рефлекторное возбуждение дыхательного и сосудодвига- тельного центров

М-холиномиметики

М-холиномиметики стимулируют м-холинорецепторы, расположенные в мембране клеток эффекторных органов и тканей, получающих парасимпатическую иннервацию. Рецепторы подразделяют на пять подтипов (M_1 , M_2 , M_3 , M_4 , M_5), различающихся по чувствительности к разным фармакологическим веществам (см. табл. 6.1). Все м-холинорецепторы — это *мембранные рецепторы*, взаимодействующие с G-белками, а через них — с определенными ферментами или ионными каналами.

G-белки при активации агонистами мускариновых рецепторов оказывают несколько эффектов на клетку.

Ингибируют аденилатциклазу (через Gi белки) и активируют фосфолипазу C. Оба этих процесса опосредованы через α -субъединицу G-белка.

Активация мускариновых рецепторов через молекулы вторичных мессенджеров приводит к открытию специфических калиевых каналов, связанных с G-белком (GIRKs), и гиперполяризации клетки. Этот эффект опосредован $\beta \gamma$ -субъединицей G-протеина (Go), которая связывается с каналом и способствует его открытию.

Выделено и обнаружено в клетках пять различных ДНК для мускариновых рецепторов человека, обозначаемых ${\rm M_1-M_5}$. Эти типы рецепторов образуют две функционально разные группы:

- м₁, м₃ и м₅ связаны с G-белками, активирующими фосфолипазу С;
- \mathbf{m}_2 и \mathbf{m}_4 связаны с G-белками, ингибирующими аденилатциклазу и активирующими \mathbf{K}^+ -каналы.

Поскольку стимуляция ${\rm M_1}$ -, ${\rm M_3}$ - рецепторов вызывает возбуждение клетки, а стимуляция ${\rm M_2}$ - и ${\rm M_4}$ -рецепторов подавляет возбуждение клетки, то существует предсказуемая взаимосвязь между подтипом рецептора и действием ацетилхолина на клетку. Разные подтипы мускариновых рецепторов обеспечивают огромное разнообразие ответов клетки на агонисты мускариновых рецепторов.

К практически значимым подтипам м-холинорецепторов относят ${\rm M_1}$ -, ${\rm M_2}$ - и ${\rm M_3}$ -холинорецепторы:

- **м**₁-холинорецепторы локализованы в ЦНС, вегетативных ганглиях, энтерохромаффиноподобных клетках желудка;
- м₂-холинорецепторы в сердце;
- м₃-холинорецепторы в гладких мышцах внутренних органов, железах, эндотелии сосудов.

Мускарин стимулирует все подтипы м-холинорецепторов.

Через ГЭБ мускарин не проникает и поэтому на ЦНС существенного влияния не оказывает.

Стимуляция ${\rm M_1}$ -холинорецепторов приводит к увеличению секреции соляной кислоты. В ответ на активацию ${\rm M_1}$ -холинорецепторов энтерохромаффиноподобные клетки желудка выделяют гистамин, который

является сильнейшим стимулятором секреции хлористо-водородной кислоты париетальными клетками желудка. Поэтому антигистаминные средства (блокаторы H_2 -гистаминовых рецепторов) являются эффективными ингибиторами секреции соляной кислоты.

В связи со стимуляцией ${\rm M_2}$ -холинорецепторов мускарин урежает сокращения сердца (вызывает брадикардию) и затрудняет атриовентрикулярную проводимость. Это действие обусловлено стимуляцией угнетающего действия блуждающего нерва. Кроме того, при стимуляции ${\rm M_2}$ -холинорецепторов активируются калиевые каналы и усиливается выход калия из клетки, что приводит к гиперполяризации мембраны и развитию тормозных эффектов в клетках миокарда.

 ${
m M_2}$ -холинорецепторы локализованы также на пресинаптической мембране окончаний постганглионарных парасимпатических волокон. При их возбуждении *уменьшается выделение ацетилхолина* в синаптическую щель.

 ${\rm M_3}$ -холинорецепторы гладкомышечных клеток и клеток экзокринных желез взаимодействуют с Gq-белками, которые активируют фосфолипазу С. При участии этого фермента из ФЛ клеточных мембран образуется инозитол-1,4,5-трифосфат, который способствует высвобождению ионов ${\rm Ca}^{2^+}$ из саркоплазматической сети (внутриклеточного депо кальция). В результате при стимуляции ${\rm M_3}$ -холинорецепторов концентрация ${\rm Ca}^{2^+}$ в цитоплазме клеток увеличивается, что вызывает повышение тонуса гладких мышц внутренних органов и увеличение секреции экзокринных желез.

Кроме того, в мембране эндотелиальных клеток сосудов располагаются *неиннервируемые* (внесинаптические) m_3 -холинорецепторы. Их стимуляция приводит к увеличению высвобождения эндотелиального релаксирующего фактора (NO), способствующего расслаблению гладкой мускулатуры сосудов, а в конечном итоге — κ снижению тонуса сосудов и уменьшению $A\mathcal{I}$.

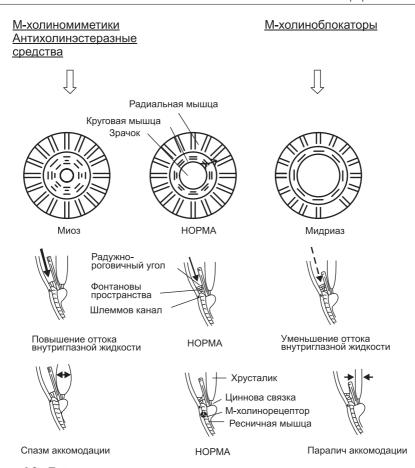
Таким образом, в связи со стимуляцией м₃-холинорецепторов мускарин:

- суживает зрачки (за счет сокращения круговой мышцы радужки цилиарной мышцы);
- вызывает спазм аккомодации [сокращение цилиарной (ресничной) мышцы расслабляет циннову связку, хрусталик становится более выпуклым и глаз устанавливается на ближнюю точку видения];
- повышает тонус гладких мышц внутренних органов: бронхов, мочевого пузыря, ЖКТ (за исключением сфинктеров) и др.;
- увеличивает секрецию бронхиальных, пищеварительных и потовых желез;
- **снижает тонус кровеносных сосудов** (за счет высвобождения оксида азота NO из эндотелия сосудов).

В медицинской практике мускарин не применяется. Фармакологическое (а точнее, токсическое) действие мускарина может проявляться при отравлении мухоморами, а также грибами рода Волоконница и Говорушка. При этом отмечаются сужение зрачков, сильное слюнотечение и потоотделение, брадикардия, снижение АД, спастические боли в животе, рвота, диарея (понос), удушье (за счет усиленной секреции бронхиальных желез и повышения тонуса бронхов).

При отравлении мухоморами действием мускарина обусловлены только периферические эффекты, а расстройства со стороны ЦНС (в том числе галлюцинации) вызваны другими токсинами — иботеновой кислотой и мусцимолом.

Фармакологические эффекты, вызываемые м-холиномиметиками:


- сокращение круговой мышцы зрачка, миоз, сокращение мышцы цилиарного тела (м,);
- брадикардия (м₂);
- расширение сосудов за счет выделения эндотелиального релаксирующего фактора — NO (м₃);
- повышение секреции экзокринных желез (слюнных, потовых, поджелудочной) (M_3);
- повышение секреции хлористо-водородной кислоты париетальными клетками желудка (м₁);
- повышение тонуса кишечника и мочевого пузыря (м₃);
- пресинаптическое угнетение выделения медиаторов (м₂).

Из м-холиномиметиков в практической медицине используют пилокарпин, ацеклидин, бетанехол и цивемилин .

Пилокарпин — алкалоид растения, произрастающего в Южной Америке. Препарат довольно токсичен, поэтому применяется только местно в глазной практике.

Пилокарпин суживает зрачки и вызывает спазм аккомодации (увеличивает кривизну хрусталика).

Сужение зрачков обусловлено сокращением под действием пило-карпина круговой мышцы радужной оболочки, которая иннервируется парасимпатическими волокнами. При сужении зрачка раскрывается угол передней камеры глаза (между радужкой и роговицей), где расположена гребешковая связка. Через фонтановы пространства (щели между трабекулами гребешковой связки) происходит отток внутриглазной жидкости в венозный синус склеры (шлеммов канал). Кроме того, повышение тонуса ресничной мышцы способствует увеличению оттока внутриглазной жидкости через трабекулярную сеть. При этом снижается внутриглазное давление (рис. 6.2). Способность пилокарпина снижать внутриглазное давление используют при лечении глаукомы — заболевания, при котором повышается внутриглазное

Рис. 6.2. Действие на глаз веществ, влияющих на холинергическую иннервацию (толщиной стрелки показана интенсивность оттока внутриглазной жидкости)

давление, что может повлечь за собой потерю зрения. При глаукоме препарат применяют в виде глазных капель, глазной мази или глазных пленок.

Пилокарпин увеличивает кривизну хрусталика (хрусталик становится более выпуклым, увеличивается его преломляющая способность). Эффект обусловлен сокращением ресничной мышцы, к которой

прикреплен ресничный поясок (циннова связка), растягивающий хрусталик. При сокращении ресничной мышцы ресничный поясок расслабляется, и хрусталик принимает более выпуклую форму. При увеличении кривизны хрусталика глаз устанавливается на ближнюю точку видения (человек хорошо видит ближние предметы и плохо — дальние). Такое явление называют *спазмом аккомодации*.

Ацеклидин — синтетическое соединение, отличающееся от пилокарпина меньшей токсичностью, поэтому ацеклидин применяют не только местно в глазной практике (при глаукоме), но и парентерально (при атонии кишечника и мочевого пузыря).

Бетанехол — синтетический м-холиномиметик. Является препаратом выбора для стимуляции моторики ЖКТ и мочевыводящих путей, в случае гипотоничного нейрогенного мочевого пузыря, а особенно при послеоперационной, послеродовой и вызванной лекарствами задержке мочи.

Цевимелин — агонист M_1 - и M_3 -холинорецепторов, применяется при лечении сухости во рту (ксеростомии) в качестве сиалагога (стимулятора выделения слюны), например при синдроме Шегрена.

Н-холиномиметики

Н-холиномиметиками называют вещества, стимулирующие н-холинорецепторы (никотиночувствительные рецепторы).

К этой группе относят алкалоиды никотин, лобелин, цитизин, которые действуют преимущественно на н-холинорецепторы нейронального типа, локализованные на нейронах симпатических и парасимпатических ганглиев, хромаффинных клетках мозгового вещества надпочечников, в каротидных клубочках и в ЦНС. На н-холинорецепторы скелетных мышц эти вещества действуют в значительно более высоких дозах.

В связи с разной чувствительностью к фармакологическим веществам различают два типа периферических н-холинорецепторов:

- к **первому типу** относят рецепторы вегетативных ганглиев, хромаффинных клеток надпочечников, каротидных клубочков (н_и-рецепторы);
- ко **второму типу** н-холинорецепторы скелетных мышц (н_м-рецепторы).

Холинергическая передача через никотиновые рецепторы происходит при связывании с ними ацетилхолина (рис. 6.3). Этот феномен называют прямым лигандзависимым проведением.

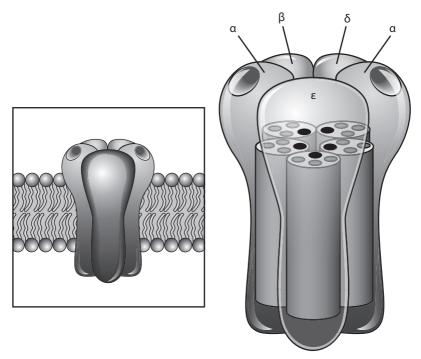


Рис. 6.3. Структура н-холинорецептора. Пояснения в тексте

Никотиновый холинорецептор состоит из пяти субъединиц, масса каждой из которых приблизительно 40 кДа. Различают несколько типов таких субъединиц, которые обозначают α , β , γ , δ и ϵ . Все они на 35–50% гомологичны друг с другом. Каждый рецептор обязательно включает две α -субъединицы, одну β -субъединицу. Остальные две субъединицы (δ , γ , ϵ) различаются у разных типов рецепторов.

Тип α , β є δ преобладает в синапсах скелетных мышц взрослого человека, а тип α , β ү δ — в мышцах эмбриона.

α-Субъединицы являются структурной основой для связывания двух молекул ацетилхолина с рецептором. Присоединение ацетилхолина изменяет конформацию α-субъединиц и создает канал для тока ионов натрия в клетку и калия из клетки. Натриевый ток вызывает локальную деполяризацию мембраны, что приводит к открытию потенциалзависимых натриевых каналов и возникновению потенциала действия.

Никотин и подобные ему вещества действуют преимущественно на н-холинорецепторы ганглионарного типа.

Классический агонист этого типа холинорецепторов — никотин, алкалоид из листьев табака. В сигарете содержится примерно 6–8 мг никотина. Смертельная доза никотина для человека — 60 мг.

При курении сигареты в организм курильщика попадает около 3 мг никотина. Никотин быстро элиминируется за счет биотрансформации в печени и частичного выведения почками ($T_{1/2}-1,5-2$ ч).

Сигаретный дым имеет кислую реакцию, в связи с чем обладающий основными свойствами (алкалоид) никотин находится в поляризованном состоянии и плохо проникает через мембраны дыхательных путей. Поэтому чтобы абсорбировать достаточное количество никотина, необходима значительная площадь поверхности легких.

Дым сигар имеет *щелочную* реакцию, и никотин, соответственно, находится в незаряженном состоянии, что облегчает его проникновение через слизистые оболочки. Поэтому сигарным дымом нет необходимости «затягиваться» — площади ротовой полости вполне достаточно для всасывания необходимой дозы никотина.

При курении никотин быстро всасывается через слизистую оболочку дыхательных путей и легко проникает через ГЭБ в ЦНС, где стимулирует процессы возбуждения и торможения.

В зависимости от типа высшей нервной деятельности человека никотин вызывает приятное ощущение успокоения или, наоборот, повышение активности.

Действуя на периферические н-холинорецепторы, никотин:

- активирует симпатические и парасимпатические ганглии;
- рефлекторно стимулирует дыхательный и сосудодвигательный центры;
- увеличивает выделение адреналина и норадреналина хромаффинными клетками надпочечников;
- возбуждает н-холинорецепторы каротидных клубочков.

Характерные эффекты никотина— сужение кровеносных сосудов (в том числе коронарных) и повышение АД— обусловлены активацией симпатической нервной системы и выделением адреналина и норадреналина хромаффинными клетками мозгового вещества надпочечников. Именно поэтому курение совершенно противопоказано больным стенокардией, гипертонической болезнью и людям с предрасположенностью к спазмам периферических сосудов.

Еще больший вред при курении приносят другие вещества, которые содержатся в табачном дыме и обладают раздражающими и канцерогенными свойствами. Большинство курильщиков страдают воспалительными заболеваниями органов дыхания. Рак легких у курильщиков развивается значительно чаще, чем у некурящих.

К никотину развивается *психическая зависимость*, причем очень быстро, быстрее, чем к героину. При прекращении курения курильщики испытывают тягостные ощущения. Поэтому многие из них, осознавая вред курения, тем не менее не могут избавиться от вредной привычки. Лишь 20% курильщиков, решивших избавиться от никотиновой зависимости, добиваются успеха.

Для того чтобы уменьшить неприятные ощущения при прекращении курения, рекомендуют жевательную резинку, содержащую никотин (2 или 4 мг), или специальный пластырь, наклеивающийся на здоровые участки кожи и равномерно выделяющий небольшие количества никотина в течение 24 ч.

K никотину развивается *привыкание* (толерантность; не путать с зависимостью). Поэтому увеличение потребления количества сигарет курильщиком — всего лишь вопрос времени.

Цитизин (алкалоид термопсиса) и **лобелин** (алкалоид лобелии) сходны по действию с никотином, но отличаются меньшей активностью и токсичностью.

Цитизин в составе таблеток Табекс^в и лобелин в составе таблеток лобесил^о применяют для облегчения отвыкания от курения.

Цититон (0,15% раствор цитизина) и раствор лобелина иногда вводят внутривенно в качестве рефлекторных стимуляторов дыхания.

М-, Н-холиномиметики

К м-, н-холиномиметикам прежде всего следует отнести **ацетилхо- лин** — медиатор, с помощью которого передается возбуждение во всех холинергических синапсах.

Ацетилхолин одновременно возбуждает м- и н-холинорецепторы, но действие ацетилхолина на м-холинорецепторы более выражено. Поэтому *обычно проявляется мускариноподобное действие ацетилхолина*: брадикардия, снижение АД, повышение тонуса гладких мышц внутренних органов, увеличение секреции желез.

Никотиноподобное действие ацетилхолина на н-холинорецепторы симпатических ганглиев, хромаффинных клеток надпочечников, каротидных клубочков проявляется, если блокировать парасимпатическую иннервацию на уровне м-холинорецепторов. Например, на фоне действия м-холиноблокаторов (атропина) ацетилхолин в больших дозах вызывает не брадикардию и снижение АД, а тахикардию и повышение АД.

Ацетилхолин в практической медицине почти не используют. Это связано с кратковременностью его действия (несколько минут). Как и естественный ацетилхолин, препарат ацетилхолина быстро разру-

шается ацетилхолинэстеразой. В то же время препарат широко применяют в экспериментальной работе.

Путем некоторого изменения структуры ацетилхолина был получен **карбахол** (карбахолин⁶), который не разрушается ацетилхолинэстеразой и действует более продолжительно. Растворы карбахола иногда используют в виде глазных капель при глаукоме.

Таким образом, можно заключить, что холиномиметики применяют:

- в офтальмологии для снижения внутриглазного давления при глаукоме (пилокарпин, реже карбахол);
- для повышения тонуса кишечника и мочевого пузыря (бетанехол[©]);
- в качестве средства, стимулирущего слюноотделение (сиалагога) при болезни Шегрена (цевимелин[©]).

Антихолинэстеразные средства

Ацетилхолин, выделившийся в синаптическую щель, разрушается ферментом ацетилхолинэстеразой. Антихолинэстеразные средства связываются с ферментом, ингибируют его и, следовательно, увеличивают концентрацию эндогенного ацетилхолина в синаптической щели. Таким образом, действие антихолинэстеразных средств заключается в пролонгировании эффектов, вызываемых эндогенным ацетилхолином.

Вещества этого класса также называют *непрямыми агонистами ацетилхолиновых рецепторов*, поскольку большинство препаратов непосредственного действия на рецепторы не оказывает. Следует упомянуть, однако, что несколько ингибиторов ацетилхолинэстеразы способны прямо воздействовать на холинорецепторы.

При введении в организм антихолинэстеразных препаратов отмечаются следующие эффекты, обусловленные действием эндогенного апетилхолина:

- сужение зрачков, спазм аккомодации;
- брадикардия;
- повышение тонуса гладких мышц внутренних органов (бронхов, ЖКТ, мочевого пузыря и др.);
- увеличение секреции экзокринных желез;
- стимулирующее влияние на нервно-мышечную передачу;
- стимуляция когнитивных процессов, в частности при болезни Альцгеймера (характерно для антихолинэстеразных препаратов, хорошо проникающих через ГЭБ).

Ацетилхолинэстераза разрушает молекулу ацетилхолина после связывания последнего с двумя центрами фермента — эстеразным и

анионным. В нервно-мышечных синапсах и ганглиях молекула ацетилхолина разрушается за 1 мс.

В зависимости от типа взаимодействия с ацетилхолинэстеразой различают антихолинэстеразные вещества обратимого и необратимого действия.

Препараты обратимого действия связываются подобно ацетилхолину с одним или обоими центрами фермента. Ацетилхолинэстераза начинает разрушать вещество, но значительно (на несколько порядков) медленнее, чем ацетилхолин. Время полуэлиминации ферментингибирующего комплекса составляет приблизительно 15—30 мин, следовательно, эффективное ингибирование длится 3—8 ч.

Вещества необратимого действия образуют ковалентные связи с молекулой ацетилхолинэстеразы и инактивируют фермент.

Антихолинэстеразные средства обратимого действия

К антихолинэстеразным средствам обратимого действия относят:

- физостигмин;
- неостигмина метилсульфат (Прозерин*);
- пиридостигмина бромид (Калимин 60 Н*);
- ривастигмин (Экселон*);
- галантамин (галантамина гидробромид[®], Реминил^{*}, Нивалин^{*});
- донепезил (Арисепт*);
- эдрофоний[®].

Многие антихолинэстеразные вещества (физостигмин, неостигмина метилсульфат, пиридостигмина бромид, ривастигмин и некоторые другие) подобно ацетилхолину связываются *с двумя активными центрами* ацетилхолинэстеразы и подвергаются гидролизу. При этом ацетилхолинэстераза оказывается ковалентно связанной с карбамоильной группой.

Гидролиз этой более прочной связи происходит медленнее — от 30 мин до нескольких часов. Другие обратимые ингибиторы ацетил-холинэстеразы (эдрофоний $^\wp$, галантамин, донепезил) связываются посредством нековалентных связей только c одним центром фермента и препятствуют его взаимодействию с ацетилхолином.

Эдрофоний оказывает кратковременное и в основном периферическое антихолинэстеразное действие. Препарат образует непрочные электростатические и водородные связи с анионным центром ацетилхолинэстеразы. Комплекс существует 5—10 мин, именно поэтому эффект воздействия эдрофония непродолжителен (5—15 мин). Кроме того, эдрофоний являясь полярным гидрофильным соединением (четвертичным амином), быстро выводится из организма. Препарат применяют для диагностики миастении, вводят внутривенно (эффект наступает через 30—60 с). Повышение тонуса скелетных мышц после

введения препарата является признаком заболевания. Эдрофоний также используют и в качестве антагониста курареподобных средств антидеполяризующего типа действия. В РЗЛС РФ отсутствует.

Донепезил и **галантамин** обладают большим сродством к ацетилхолинэстеразе и действуют намного продолжительнее. Эти вещества, в отличие от эдрофония $^{\wp}$, являются третичными аминами и проникают через ГЭБ в ткани мозга.

Неостигмина метилсульфат — синтетическое соединение, содержащее четвертичный атом азота. Плохо проникает через ГЭБ. Препарат обладает выраженной антихолинэстеразной активностью, усиливая и удлиняя действие ацетилхолина преимущественно в периферических холинергических синапсах.

При применении неостигмина преобладают эффекты, связанные с возбуждением парасимпатической иннервации.

- Неостигмин вызывает *сужение зрачков* (вследствие сокращения круговой мышцы радужки), что приводит к *понижению вну- триглазного давления* (открывается угол передней камеры глаза и облегчается отток внутриглазной жидкости через фонтановы пространства в шлеммов канал).
- Одновременно развивается *спазм аккомодации* (вследствие сокращения цилиарной мышцы расслабляется циннова связка хрусталик становится более выпуклым и глаз устанавливается на ближнюю точку видения).
- Неостигмин вызывает *брадикардию и замедление атриовентрику-лярной проводимости*, *активирует секрецию* экзокринных желез, *повышает тонус и моторику* гладкой мускулатуры (бронхов, ЖКТ), а также тонус и сократительную активность мочевого пузыря, матки.
- Стимуляция неостигмином н-холинорецепторов приводит к улучшению нервно-мышечной проводимости.

В клинической практике в основном используют стимулирующее действие неостигмина на тонус скелетных мышц и тонус гладких мышц ЖКТ и мочевого пузыря.

Основные показания к применению неостигмина

• Миастения — аутоиммунное заболевание, при котором образуются антитела к н-холинорецепторам скелетных мышц, вследствие чего уменьшается их количество. Проявляется мышечной слабостью, повышенной утомляемостью скелетных мышц. В тяжелых случаях возможно нарушение дыхания из-за снижения сократимости дыхательных мышц. При миастении неостигмин назначают внутрь, подкожно или внутримышечно, при миастеническом кризе вводят внутривенно.

- Послеоперационная атония кишечника и мочевого пузыря, при которой неостигмин вводят внутрь, подкожно или внутримышечно.
- В качестве антагониста курареподобных средств антидеполяризующего конкурентного типа действия неостигмин вводят внутривенно для снятия остаточного нервно-мышечного блока.

Неостигмин, будучи полярным гидрофильным соединением, после приема внутрь плохо всасывается из ЖКТ (дозы для приема внутрь в 30 раз превышают дозы для парентерального введения). Действие препарата непродолжительно (2-3 y).

Побочные эффекты неостигмина в основном связаны со стимуляцией м-холинорецепторов: тошнота, рвота, диарея, гиперсаливация, брадикардия, снижение АД, повышение тонуса бронхов. Стимуляция н-холинорецепторов вызывает подергивание скелетных мышц.

Пиридостигмина бромид — четвертичное аммониевое соединение, действующее подобно неостигмину, но более продолжительно (около 6 ч). По сравнению с неостигмином обладает менее выраженным мускариноподобным действием. Через ГЭБ не проникает. Препарат применяют в основном при лечении миастении, а также при атонии кишечника и мочевого пузыря. Назначают как внутрь, так и парентерально. Побочные эффекты и противопоказания аналогичны таковым для неостигмина. При передозировке пиридостигмина возможен холинергический криз.

Другой длительно действующий препарат, применяемый при миастении, — **амбенония хлорид** (оксазил $^{\wp}$) — является четвертичным аммониевым соединением, не проникает через ГЭБ. Продолжительность действия — до 10 ч. Принимают внутрь.

Физостигмин — алкалоид калабарских бобов, произрастающих в Западной Африке, был первым антихолинэстеразным веществом, внедренным в медицинскую практику. Поскольку физостигмин по структуре является третичным амином и поэтому хорошо проникает через ГЭБ, его можно использовать как антидот при отравлении холиноблокаторами, проникающими в ЦНС (например, атропином). Растворы физостигмина иногда используют в глазной практике при глаукоме как миотическое средство, облегчающее отток внутриглазной жилкости.

Кроме того, физостигмин послужил прототипом для создания средств, используемых при лечении болезни Альцгеймера. Это заболевание характеризуется прогрессирующей потерей памяти и развитием слабоумия, что связывают с атрофией нейронов коры и подкорковых структур мозга (в том числе и подкорковых холинергических нейронов). При этом отмечается снижение концентрации ацетилхолина

в тканях мозга, что является основанием для применения антихолинэстеразных средств.

Сам физостигмин в настоящее время при болезни Альцгеймера не применяют по причине непродолжительного действия и выраженных побочных эффектов, связанных со стимуляцией периферических холинорецепторов. Препарат такрин (когнекс), ранее рекомендованный к применению при болезни Альцгеймера, в настоящее время также имеет ограниченное применение (в нашей стране — не используется) из-за множества побочных эффектов, наиболее серьезный из которых — нарушение функции печени.

Галантамин (Реминил*), ривастигмин, донепезил и другие антихолинэстеразные препараты, применяемые при болезни Альцгеймера, имеют определенные преимущества. Эти вещества (в особенности ривастигмин) оказывают преимущественное ингибирующее воздействие на ацетилхолинэстеразу ЦНС, поэтому у них менее выражены побочные эффекты, обусловленные ингибированием ацетилхолинэстеразы периферических тканей (скелетных мышц, внутренних органов) и стимуляцией периферических холинорецепторов. Кроме того, перечисленные вещества не обладают характерной для такрина гепатотоксичностью.

Антихолинэстеразное действие достаточно продолжительное — донепезил назначают 1 раз, а галантамин и ривастигмин — 2 раза в сутки. Курсовое применение этих препаратов способствует улучшению памяти (когнитивных функций) и частично уменьшает выраженность других проявлений болезни Альцгеймера. Среди побочных эффектов отмечают тошноту, рвоту, диарею, бессонницу.

Галантамин (нивалин*) назначают подкожно при:

- параличах скелетных мышц, обусловленных нарушениями со стороны ЦНС (например, при остаточных явлениях после перенесенного полиомиелита, при спастических формах церебрального паралича);
- атонии кишечника и мочевого пузыря;
- миастении.

Внутривенно препарат применяют как антагонист курареподобных средств антидеполяризующего конкурентного типа действия.

При передозировке антихолинэстеразных средств обратимого действия применяют м-холиноблокаторы (например, атропин).

Антихолинэстеразные средства необратимого действия

К этой группе относятся фосфорорганические соединения (ФОС), которые ингибируют ацетилхолинэстеразу за счет образования ковалентных связей с эстеразным центром фермента. Эти связи очень

прочные и гидролизуются медленно (в течение сотен часов). Поэтому ФОС ингибируют ацетилхолинэстеразу практически необратимо. В медицинской практике ФОС применяют только местно, что

В медицинской практике Φ OC применяют только местно, что связано с их высокой токсичностью. Препараты **армин** и **экотиопат** могут быть использованы в качестве миотических средств для снижения внутриглазного давления при глаукоме.

Экотиопат $^{\wp}$ — гидрофильное полярное соединение, устойчивое в водном растворе (в отличие от других ФОС). Препарат плохо проникает через конъюнктиву, поэтому при его применении меньше опасность возникновения системных побочных эффектов. Продолжительность действия — около 4 сут.

ФОС *применяют*, главным образом, *в немедицинских целях*: в сельском хозяйстве в качестве фунгицидов, гербицидов, дефолиантов, а также в качестве инсектицидов для уничтожения насекомых (карбофос, тиофос). Некоторые ФОС используются как боевые отравляющие вещества (зоман).

Поскольку ФОС обладают высокой липофильностью, они *легко* всасываются через неповрежденную кожу и слизистые оболочки (в том числе с поверхности легких) и поэтому нередко становятся причиной отравлений.

При острых отравлениях ФОС наблюдаются:

- миоз (сужение зрачков);
- потливость;
- повышенное слюноотделение;
- спазм бронхов и повышение секреции бронхиальных желез, что проявляется ощущением удушья;
- брадикардия, сменяющаяся тахикардией;
- снижение АД (в ряде случаев сменяющееся его повышением);
- рвота;
- спастические боли в животе;
- диарея;
- психомоторное возбуждение.

В более тяжелых случаях отравления отмечаются подергивания мышц и судороги, резкое падение АД, коматозное состояние. Смерть наступает от паралича дыхательного центра.

При попадании ФОС на *кожу и слизистые оболочки* следует быстро вытереть кожу сухим ватным тампоном и затем промыть 5–6% раствором натрия гидрокарбоната и теплой водой с мылом.

При введении ФОС *внутрь* необходимо промыть желудок, дать адсорбирующие и слабительные средства.

Если вещество *всосалось в кровь*, для ускорения его выведения применяют форсированный диурез. Используют также гемодиализ, гемосорбцию, перитонеальный диализ.

Поскольку основные симптомы острого отравления Φ OC вызваны стимуляцией м-холинорецепторов, для их устранения применяют м-холиноблокаторы, чаще всего атропин, который вводят внутривенно в больших дозах (2–4 мл 0.1% раствора).

Используют также *реактиваторы холинэстеразы* — вещества, восстанавливающие активность фермента.

Реактиваторы ацетилхолинэстеразы содержат в молекуле оксимную группу (—NOH), обладающую высоким сродством к атому фосфора. Они взаимодействуют с остатками ФОС, связанными с ацетилхолинэстеразой, дефосфорилируют фермент и таким образом восстанавливают его активность. Реактиваторы холинэстеразы эффективны только в течение нескольких часов после отравления. Это объясняется изменением химических связей между ацетилхолинэстеразой и остатками ФОС («старением» комплекса), в результате чего этот комплекс становится более устойчивым к действию реактиваторов.

В качестве реактиваторов холинэстеразы применяют **тримедоксима бромид** (дипироксим $^{\wp}$), аллоксим, изонитрозин $^{\wp}$.

Дипироксим и аллоксим относятся к четвертичным аммониевым соединениям, которые плохо проникают через ГЭБ. Изонитрозин — третичный амин, хорошо проникает в ЦНС и устраняет не только периферические, но и центральные эффекты ФОС. Препараты используют при оказании неотложной помощи в условиях стационара, вводят парентерально. Реактиваторы холинэстеразы не применяют при отравлениях антихолинэстеразными средствами обратимого действия.