Э.В. Сперанская

A Level Mathematics For Russian pupils

УЧЕБНОЕ ПОСОБИЕ

№	Тема	Contents	Страница Pages
	Пример экзаменационной работы (I)	Examination style paper (I)	17
	Базовый уровень C2	Core Mathematics C2	20
	Функции	Algebra and functions	20
1	Деление многочленов	Division of polynomials	20
2	Теорема о целых корнях	The factor theorem	22
3	Обобщённая теорема о целых корнях	The factor theorem (extended form)	24
4	Теорема о делении с остатком	The remainder theorem	26
	Геометрия на координатной плоскости	Coordinate geometry in the (x, y) plane	28
5	Нормаль к кривой, проведённой в заданной точке	The normal to a curve at a point	28
	Бином Ньютона	The binomial expansion	31
6	Треугольные числа	The triangle number sequence	31
7	Последовательность Паскаля	Pascal sequence	36
8	Треугольник Паскаля	Pascal's triangle	38
9	Сочетания. Определение факториала	Combinations and factorial notations	40
10	Последовательность факториалов	The factorial sequence	40
11	Разложение $(x+y)^{n}, \mathrm{n}>0$	Expansion $(x+y)^{n}, \mathrm{n}>0$	43
12	Разложение $(a+b x)^{n}, \mathrm{n}>0$	Expansion $(a+b x)^{n}, \mathrm{n}>0$	45
	Радианная мера	Radians measure	47
13	Длина дуги окружности	The length of an arc of the circle	47
14	Площадь сектора	The area of a sector	49

15	Площадь сегмента	The area of a segment	51
16	Решение тригонометрических уравнений в радианах	Solving trigonometric equations using radians	54
	Интегрирование	Integration	56
17	Метод трапеций	Trapezium rule	56
	Дифференцирование	Differentiation	58
18	Вторая производная	The second derivative	58
19	Некоторые тригонометрические неравенства и пределы	Some inequalities and limits	61
	Базовый уровень С3	Core Mathematics C3	63
	Алгебраические дроби	Algebraic fractions	63
20	Теорема об остатке при делении многочленов	The remainder theorem (extended)	63
	Функции	Functions	65
21	Диаграммы соответствия. Функция	Mapping diagram. Function	65
22	Область определения и область значений функции	Domain and range of the function	68
23	Сложные функции	Forming composite functions	70
	Численные методы	Numerical methods	72
24	Теорема о корне	Sign-change rule	72
25	Извлечение корней методом итераций	Finding roots by iteration	75
	Тригонометрия	Trigonometry	77
26	Секанс, косеканс и котангенс	Secant, cosecant and cotangent	77
27	График функции у = sec ${ }_{\theta}$	The graph of $\mathrm{y}=\sec _{\theta}$	79

28	График функции у $=\operatorname{cosec}_{\theta}$	The graph of $\mathrm{y}=\operatorname{cosec}_{\theta}$	82
	Дифференцирование	Differentiation	84
29	Дифференцирование сложной функции	The chain rule	84
30	Производные sec $x, \operatorname{cosec} x$	The derivative of $\sec x, \operatorname{cosec} x$	86
	Базовый уровень С4	Core Mathematics C4	88
	Элементарные дроби	Partial fractions	88
31	Разложение неправильных дробей	Improper fractions	88
32	Разложение на элементарные дроби. Знаменатель имеет кратные корни	Partial fractions with a repeated factor	90
33	Разложение на элементарные дроби. Знаменатель имеет однократные корни	Partial fractions with the denominator includes a quadratic factor	92
	Геометрия на координатной плоскости	Coordinate geometry in the (x, y) plane	94
34	Уравнения, содержащие параметр	Parametric equation	94
35	Перевод параметрической формы задания функции в алгебраическую	From parametric to Cartesian equations	97
36	Площадь под кривой, заданной параметрическим уравнением	The area under the curve given by the parametric equation	99
	Биномиальное разложение	The binomial expansion	10
37	Разложение $(1+x)^{n}, \mathrm{n}<0$	Expansion $(1+x)^{n}, \mathrm{n}<0$	101
38	Биномиальное разложение при помощи элементарных дробей	Partial fractions for binomial expanding	103

	Дифференцирование	Differentiation	105
39	Дифференцирование функций, заданных в параметрическом виде	Differentiation and parametric form	105
40	Производная функции, заданной уравнением в неявном виде	Finding gradient from implicit equations	107
41	Неявные функции, содержащие произведение	Implicit equations including products	107
	Векторы	Vectors	111
42	Векторы в трёхмерном пространстве	Vectors in three dimensions	111
43	Скалярное произведение векторов	Scalar product	113
44	Скалярное произведение векторов, выраженных через координатные вектора	Scalar products in component form	115
45	Векторное уравнение прямой на координатной плоскости	Vector equation of a line in two dimensions	117
	Интегрирование	Integration	120
46	Интегралы вида $\int \sec ^{2} x d x, \int \operatorname{cosec} 2 x d x$, $\int \operatorname{cosec} x \times \operatorname{ct} \operatorname{gxdx}, \int \sec x \times \operatorname{tg} \mathrm{g} d x$	Integrals $\int \sec ^{2} x d x, \int \operatorname{cosec}^{2} x d x$, $\int \operatorname{cosec} x \times \cot x d x, \int \sec x \times \tan x d x$	120
47	Интегрирование дробных выражений	Integration of partial fractions	122
48	Интегралы вида $\frac{f^{\prime}(x)}{f(x)} d x, \int k f^{\prime}(x)[f(x)]^{n} d x$	Integrals $\frac{f^{\prime}(x)}{f(x)} d x, \int k f^{\prime}(x)[f(x)]^{n} d x$	124
49	Интегрирование методом замены переменной	Integration by substitution	126
50	Интегрирование по частям	Integration by parts	128

51	Объём тела вращения относительно оси x	Volumes of revolution about the x -axis	130
52	Объём тела вращения относительно оси у	Volumes of revolution about the y -axis	132
	Применение интегрирования для решения дифференциальных уравнений	Integration for solving differential equation	134
53	Решение дифференциальных уравнений. Тип 1	Solving differential equations. Type 1	134
54	Решение дифференциальных уравнений. Тип 2	Solving differential equations. Type 2	136
55	Решение дифференциальных уравнений. Тип 3	Solving differential equations. Type 3	138
56	Решение дифференциальных уравнений вида $\frac{d y}{d x}=F(x, y)$. Тип 4	Solving differential equations of the form $\frac{d y}{d x}=F(x, y)$ Type 4	140
57	Применение дифференциальных уравнений	Applications of the differential equations	143
	Уровень повышенной сложности (FP1)	Further Pure Mathematics 1(FP1)	146
	Комплексные числа	Complex numbers	146
58	Понятие комплексного числа	Extending the number system	146
59	Действия с комплексными числами (сложение, вычитание)	Operations with complex numbers (addition, subtraction)	148
60	Действия с комплексными числами (умножение, умножение на сопряжённое выражение, деление)	Operations with complex numbers (multiplication, conjugate, division)	150
61	Основная теорема алгебры	Fundamental Theorem of Algebra	153
62	Теорема о сопряжённых корнях уравнения	Conjugate Root Theorem	155
63	Геометрическое изображение комплексных чисел	Geometrical representation	157
64	Модуль комплексного числа	The modulus of complex number	159

65	Аргумент комплексного числа	The argument of complex number	161
66	Квадратный корень из комплексного числа	Square roots of complex numbers	163
67	Решение уравнений с действительными коэффициентами	Solving equations with real coefficients	165
	Численные решения уравнений	Numerical solutions of equations	167
68	Метод половинного деления (дихотомия)	Interval bisection	167
69	Линейная интерполяция	Linear interpolation	170
70	Метод Ньютона-Рафсона	The Newton-Raphson process	173
	Cuстема координат	Coordinate systems	175
71	Параметрическое уравнение параболы	Parametric equation of parabola	175
72	Фокус, директриса, вершина параболы	The focus, the directrix, the vertex of parabola	178
73	Параметрическое уравнение гиперболы	Parametric equation of hyperbola	181
74	Касательная и нормаль к гиперболе	Tangent and normal of hyperbola	183
	Ряды	Series	186
75	Знак \sum	\sum notation	186
76	Более сложные прогрессии	More complex series	189
77	Математическая индукция	Mathematical induction	191
	Уровень повышенной сложности (FP2)	Further Pure Mathematics 2(FP2)	194
	Неравенства	Inequalities	194
78	Неравенства, содержащие модуль	Inequalities with modulus function	194

	Ряды	Series	197
79	Метод разностей	The method of differences	197
80	Биномиальные ряды	Binomial series	200
81	Приближённые вычисления	Approximations	202
	Комплексные числа (продолжение)	Further complex numbers	204
82	Показательная форма комплексного числа	The exponential form	204
83	Тригонометрическая форма комплексного числа	Complex numbers in polar form	206
84	Свойства сіs	Properties of cis	208
85	Теорема Муавра	De Moivre Theorem	210
86	Применение биномиального разложения вида $(\cos \theta+i \sin \theta)^{n}$	Applying the binomial expansion to $(\cos \theta+i \sin \theta)^{n}$	212
87	Теорема Муавра. Корень n-й степени из комплексного числа	De Moivre' Theorem. Finding the n-th root of a complex number	214
88	Изображение комплексных чисел на комплексной плоскости. Окружность	Complex numbers. A locus of points on an Argand diagram. A circumference	216
89	Изображение комплексных чисел на комплексной плоскости. Серединный перпендикуляр	Complex numbers. A locus of points on an Argand diagram. A perpendicular bisector	220
90	Изображение комплексных чисел на комплексной плоскости. Луч	Complex numbers. A locus of points on an Argand diagram. A half-line	223
91	Комплексные числа. Области комплексной плоскости	Complex numbers. Region on an Argand diagram	226
92	Уравнения с комплексными коэффициентами	Equations with complex coefficients	229

93	Параллельный перенос	Transformation points on the z-plane to points on the w-plane	231
	Дифференциальные уравнения второго порядка	Second order differential equations	234
94	Дифференциальное уравнение второго порядка $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}>4 a c$	Second order differential equation $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}>4 a c$	234
95	Дифференциальное уравнение второго порядка $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}=4 a c$	Second order differential equations of the form $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}=4 a c$	237
96	Дифференциальное уравнение второго порядка $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}<4 a c$ (мнимые корни)	Second order differential equation $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}<4 a c$ (imaginary roots)	239
97	Дифференциальное уравнение второго порядка $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}<4 a c$ (комплексные корни)	Second order differential equation $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, b^{2}<4 a c$ (complex roots)	241
	Ряды Тейлора и Маклорена	Maclaurin and Taylor Series	243
98	Производные высших порядков	Higher derivatives	243
99	Разложение Маклорена	The Maclaurin expansion	245
100	Разложение Тейлора	The Taylor expansion	247
	Полярные координаты	Polar coordinates	249
101	Полярные координаты	Polar coordinates	249
102	Уравнения кривых в полярной и декартовой системах координат	Polar and Cartesian equations of curves	251

103	Стандартные кривые, заданные полярными координатами	Standard polar curves	253
104	Полярные координаты. Площадь сектора	Area of a sector of a polar curve	255
105	Уравнение касательной к прямой, заданной полярными координатами	Tangents to polar curves	257
	Уровень повышенной сложности (FP3)	Further Pure Mathematics 3(FP3)	260
	Гиперболические функции	Hyperbolic functions	260
106	Определение гиперболических функций	The definitions of the hyperbolic functions	260
107	График функции $y=\sinh x$	The graph of $y=\sinh x$	262
108	Тождества для гиперболических функций	Hyperbolic identities	264
109	Обратные гиперболические функции	Inverse hyperbolic functions	266
110	Уравнения, содержащие гиперболические функции	Hyperbolic equations	269
	Cuстема координат (продолжение)	Further coordinate systems	271
111	Эллипс. Уравнение в декартовой системе координат. Параметрическое уравнение	Cartesian and parametric equations of ellipse	271
112	Уравнения касательных и нормалей к эллипсу	Tangents and normals for an ellipse	274
113	Гипербола. Уравнение в декартовой системе координат. Параметрические уравнения	Cartesian and parametric equations for a hyperbola	276
114	Уравнения касательных и нормалей к гиперболе	Tangents and normals for a hyperbola	279
115	Эксцентриситет эллипса, параболы, гиперболы	Eccentricity. An ellipse. A parabola. A hyperbola	281
	Дифференцирование	Differentiation	284
116	Дифференцирование гиперболических функций	Differentiation of hyperbolic functions	284

117	Дифференцирование обратных гиперболических функций	Differentiation of inverse hyperbolic functions	286
118	Дифференцирование обратных тригонометрических функций	Differentiation of inverse trigonometric functions	288
	Интегрирование	Integration	290
119	Стандартные интегралы	Integration of standard integrals	290
120	Интегрирование гиперболических функций	Integration of hyperbolic functions	293
121	Тригонометрические и гиперболические замены при интегрировании	Trigonometric and hyperbolic substitution in integration	295
122	Интегрирование выражений вида $\int \frac{1}{p x^{2}+q x+r} d x \text { И } \int \frac{1}{\sqrt{p x^{2}+q x+r}} d x$	Integration expressions of the form $\int \frac{1}{p x^{2}+q x+r} d x \text { and } \int \frac{1}{\sqrt{p x^{2}+q x+r}} d x$	297
123	Интегрирование обратных тригонометрических и гиперболических функций	Integration of inverse trigonometric and hyperbolic functions	299
124	Длина дуги кривой	The length of an arc of a curve	301
125	Площадь поверхности тела вращения	The area of a surface of revolution	303
	Векторы	Vectors	305
126	Позиционные вектора	Position vectors	305
127	Векторное произведение	Vector product	307
128	Свойства векторного произведения	Properties of the vector product	310
129	Объём параллелепипеда	The volume of the parallelepiped	313

130	Объём тетраэдра	The volume of tetrahedron	315
131	Векторное уравнение прямой в виде $(r-a) \times b=0$	The vector equation of the line in the form $(r-a) \times b=0$	317
132	Уравнение плоскости в виде $r . n=p$	The scalar product form of the equation of a plane $r . n=p$	319
133	Уравнение плоскости в декартовой системе координат	The Cartesian equation of a plane	321
134	Векторное уравнение плоскости	The vector equation of a plane	323
135	Точка пересечения прямых	The point of intersection of the lines	325
136	Точка пересечения прямой и плоскости	The point of intersection of the line and the plane	327
137	Линия пересечения плоскостей	The line of intersection of the planes	329
138	Угол между прямой и плоскостью	The angle between the line and the plane	331
139	Угол между плоскостями	The angle between the planes	333
140	Расстояние от начала координат до плоскости	The length of the perpendicular from the origin to the plane	335
141	Расстояние от точки до плоскости	The length of the perpendicular from the point to the plane	337
142	Расстояние между параллельными прямыми	The shortest distance between the parallel lines	340
143	Расстояние между скрещивающимися прямыми	The shortest distance between the two skew lines	342
144	Расстояние от точки до прямой	The shortest distance between the point and the line	344

145	Нахождение общего перпендикуляра к двум векторам	The common perpendicular to two vectors	347
	Алгебра матрии (продолжение)	Further matrix algebra	349
146	Транспонированная матрица	The transpose of a matrix	349
147	Определитель матрицы 3×3	The determinant of a 3×3 matrix	352
148	Обратная матрица размером 3×3	The inverse of a 3×3 matrix	354
149	Собственные числа и собственные вектора матриц	The eigenvalues and eigenvectors of а matrices	357
150	Ортогональная и диагональная матрицы	An orthogonal and diagonal matrices	360
	Пример экзаменационной работы (II)	Examination style paper (II)	364
	Ответы к заданиям	Answers	367

Пример экзаменационной работы Examination style paper (I)

1) Given that $x=4\left(3^{-y}\right)$, express y in terms of x.
2) Solve the inequality $2 x>|x-1|$.
3) The parametric equations of a curve are $x=2 \theta+\sin 2 \theta, y=1-\cos 2 \theta$.

Show that $\frac{d y}{d x}=\tan \theta$.
4) (I) Express $7 \cos \theta+24 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places.
(II) Hence solve the equation
$7 \cos \theta+24 \sin \theta=15$,
giving all solutions in the interval $0^{\circ} \leq \alpha \leq 360^{\circ}$.
5) In a certain industrial process, a substance is being in a container. The mass of the substance in the container t minutes after the start of the process is x grams. At any time, the rate of formation of the substance is proportional to its mass. Also, throughout the process, the substance is removed from the container at a constant rate of 25 gram per minute. When $t=0$, $\mathrm{x}=1000$ and $\frac{d x}{d t}=75$
(I) Show that x and t satisfy the differential equation $\frac{d x}{d t}=0,1(x-250)$.
(II) Solve this differential equation, obtaining an expression for x in terms of t .
6) (I) By sketching a suitable pair of graphs, show that the equation
$2 \cot x=1+e^{x}$ where X is in radians, has only one root in the interval $0<x \leq \frac{1}{2} \pi$.
(II) Verify by calculation that this root lies between 0.5 and 1.0.
(III) Show that this root also satisfies the equation $x=\tan ^{-1}\left(\frac{2}{1+e^{x}}\right)$
(IV) Use the iterative formula $x_{n+1}=\tan ^{-1}\left(\frac{2}{1+e^{x_{n}}}\right)$

With initial value $x_{1}=0.7$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
7) The complex number $2+i$ is denoted by u. Its complex conjugate is denoted by u^{*}.
(I) Show, on a sketch of an Argand diagram with origin O, the points A, B and C representing the complex numbers u, u^{*} and $u+u^{*}$ respectively. Describe in geometrical terms the relationship between the four points $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C .
(II) Express $\frac{u}{u^{*}}$ in the form $\mathrm{x}+\mathrm{i} \mathrm{y}$, where x and y are real.
(III) By considering the argument of $\frac{u}{u^{*}}$, or otherwise, prove that $\tan ^{-1}\left(\frac{4}{3}\right)=2 \tan ^{-1}\left(\frac{1}{2}\right)$.
8)

The diagram shows a sketch o the curve $y=x^{\frac{1}{2}} \ln x$ and its minimum point M . The curve cuts the x -axis at the point (1.0).
(I) Find the exact value of the x-coordinate of M.
(II) Use integration by parts to find the area of the shaded region enclosed by the curve, the x-axis and the line $x=4$. Give your answer correct to 2 decimal places.
9) (I) Express $\frac{10}{(2-x)\left(1+x^{2}\right)}$ in partial fractions.
(II) Hence, given that $|x|<1$, obtain the expansion of $\frac{10}{(2-x)\left(1+x^{2}\right)}$ in ascending powers of x , up to and including the term in
x^{3}, simplifying the coefficients.
10) The points A and B have position vectors, relative to the origin O, given by
$O \vec{A}=\left(\begin{array}{l}-1 \\ 3 \\ 5\end{array}\right)$ and $O \vec{B}=\left(\begin{array}{l}3 \\ -1 \\ -4\end{array}\right)$.
The line I passes through A and is parallel to $O B$. The point N is the foot of the perpendicular from B to I.
(I) State a vector equation from the line I.
(II) Find the position vector of N and show that $\mathrm{BN}=3$.
(III) Find the equation of the plane containing A, B and N, giving your answer in the form $a x+b y+c z=d$.

Базовый уровень C2 Core Mathematics C2

Функции	Algebra and functions
1. Деление многочленов	1. Division of polynomials
Теория При делении одного многочлена $a(x)$ на другой $b(x)$ делимое, делитель и частное связаны соотношением $\mathrm{a}(\mathrm{x}) \equiv \mathrm{b}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$, при условии, что $\mathrm{b}(\mathrm{x})$ не является константой	Theory When a polynomial, $a(x)$, is divided by non - constant divisor, $b(x)$, the quotient $q(x)$ and the remainder $r(x)$ are defined by the identity $\mathrm{a}(\mathrm{x}) \equiv \mathrm{b}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
Пример Найдите частное и остаток при делении $x^{4}+x+2$ на $\mathrm{x}+1$	Example Find the quotient and remainder when $x^{4}+x+2$ is divided by $\mathrm{x}+1$
Решение	Solution
1) $x^{4}+x+2 \equiv(x+1)\left(A x^{3}+B x^{2}+C x+D\right)+R$	1) $x^{4}+x+2 \equiv(x+1)\left(A x^{3}+B x^{2}+C x+D\right)+R$
2) $x^{4}+x+2 \equiv A x^{4}+(A+B) x^{3}+(B+C) x^{2}+(C+D) x+D+R$	2) $x^{4}+x+2 \equiv A x^{4}+(A+B) x^{3}+(B+C) x^{2}+(C+D) x+D+R$
3) $1=A$	3) $1=A$
4) $0=A+B, B=-1$	4) $0=A+B, B=-1$
5) $0=B+C, C=1$	5) $0=B+C, C=1$
6) $1=C+D, D=0$	6) $1=C+D, D=0$
7) $2=D+R, R=2$	7) $2=D+R, R=2$
8) Частное равно $x^{3}-x^{2}+x$, остаток равен 2	8) The quotient is $x^{3}-x^{2}+x$ and remainder is 2

Work paper	
Assignment 1	Assignment 2
Find the quotient and remainder when $x^{4}+3 x^{2}-2$ is divided by $x^{2}-2 x+2$	Find the quotient and remainder when the first polynomial is divided by the second. $x^{4}-2 x^{3}-7 x^{2}+5, x^{2}+2 x-1$
Solution	Solution

2. Теорема о целых корнях	2. The factor theorem
Теория Дан многочлен $p(x)$ a) Если ($\mathrm{x}-\mathrm{t}$) делитель $\mathrm{p}(\mathrm{x})$, то $p(\mathrm{t})=0$ b) Если $p(t)=0$, то ($\mathrm{x}-\mathrm{t}$) делитель $p(\mathrm{x})$ Если целое число t - корень многочлена p над Z, то для любого целого x : число $f(x)$ кратно ($x-t$). Это утверждение называется теоремой о целых корнях	Theory Let $p(x)$ be a polynomial. Then a) if $(x-t)$ is a factor of $p(x)$, then $p(t)=0$ b) if $p(t)=0$, then $(x-t)$ is a factor of $p(x)$ The second of this results is called the factor theorem
Пример Найдите делители и корни многочлена $x^{3}-x^{2}-5 x-3$. Решите уравнение $x^{3}-x^{2}-5 x-3=0$	Example Find the factors of $x^{3}-x^{2}-5 x-3$, and hence solve the equation $x^{3}-x^{2}-5 x-3=0$
Решение 1) $p(x)=x^{3}-x^{2}-5 x-3$ 2) Пусть $\mathrm{x}=1$, $p(x)=x^{3}-x^{2}-5 x-3=0 p(1)=1^{3}-1^{2}-5 \times 1-3=-8 \neq 0$ 3) Пусть $\mathrm{x}=-1, p(-1)=(-1)^{3}-(-1)^{2}-5 \times(-1)-3=0$ следовательно, $(\mathrm{x}+1)$ является делителем 4) $x^{3}-x^{2}-5 x-3 \equiv(x+1)\left(x^{2}-2 x-3\right)=(x+1)^{2}(x-3), \mathrm{x}=-1, \mathrm{x}=3$	Solution 1) $p(x)=x^{3}-x^{2}-5 x-3$ 2) $\operatorname{Try} x=1$, $p(x)=x^{3}-x^{2}-5 x-3=0 p(1)=1^{3}-1^{2}-5 \times 1-3=-8 \neq 0$ 3)Try $\mathrm{x}=-1, p(-1)=(-1)^{3}-(-1)^{2}-5 \times(-1)-3=0$, so $(\mathrm{x}+1)$ is a factor 4) $x^{3}-x^{2}-5 x-3 \equiv(x+1)\left(x^{2}-2 x-3\right)=(x+1)^{2}(x-3), \mathrm{x}=-1, \mathrm{x}=3$

Work paper	
Assignment 1	Assignment 2
Show that $(x-1)$ is a factor of $6 x^{3}+11 x^{2}-5 x-12$ and find	Find the value of \boldsymbol{a} for which $(x-2)$ is a factor of
the other two linear factors of the expression	
Solution	Solution
$3 x^{3}+a x^{2}+x-2$	

3. Обобщённая теорема о корне многочлена

Теория

Дан многочлен $p(x)$.
a) Если (sx-t) делитель $p(x)$, то $p\left(\frac{t}{s}\right)=0$
b) Если $\mathrm{p}\left(\frac{t}{-}\right)=0$, (sx-t) делитель $\mathrm{p}(\mathrm{x})$

Если число $\frac{t}{s}$ - корень многочлена p над Z, то для любого целого x : число $f(x)$ кратно (sx-t). Это утверждение называется обобщённой теоремой о целых корнях

Пример

Найдите делители и корни многочлена $p(x) \equiv 3 x^{3}+4 x^{2}+5 x-6$

Решение

1) $s= \pm 1 ; \pm 3$.
2) $t= \pm 1 ; \pm 2 ; \pm 3 ; \pm 6$.
3) Подставляя эти значения в многочлен, получим:
$p\left(\frac{2}{3}\right) \equiv 3 \times\left(\frac{2}{3}\right)^{3}+4 \times\left(\frac{2}{3}\right)^{2}+5 \times\left(\frac{2}{3}\right)=0$, следовательно, (3x-2)
является делителем
4) $p(x) \equiv 3 x^{3}+4 x^{2}+5 x-6 \equiv(3 x-2)\left(x^{2}+2 x+3\right)$

3. The factor theorem (extended form)

Theory

Let $p(x)$ be a polynomial. Then
a) if $(s x-t)$ is a factor of $p(x)$, then $p\left(\frac{t}{s}\right)=0$
b) if $p\left(\frac{t}{s}\right)=0$, then $(s x-t)$ is a factor of $p(x)$

The second of this results is called the extended form of the factor theorem

Example

Find the factors of $p(x) \equiv 3 x^{3}+4 x^{2}+5 x-6$

Solution

1) $s= \pm 1 ; \pm 3$
2) $t= \pm 1 ; \pm 2 ; \pm 3 ; \pm 6$
3) Working through all these in turn, find that $p\left(\frac{2}{3}\right) \equiv 3 \times\left(\frac{2}{3}\right)^{3}+4 \times\left(\frac{2}{3}\right)^{2}+5 \times\left(\frac{2}{3}\right)=0$, so $(3 \mathrm{x}-2)$ is a factor
4) $p(x) \equiv 3 x^{3}+4 x^{2}+5 x-6 \equiv(3 x-2)\left(x^{2}+2 x+3\right)$

Work paper	
Assignment 1	Assignment 2
Factorize cubic polynomials p(x). 1) $3 x^{3}-x^{2}-12 x+4$ 2) $6 x^{3}+7 x^{2}-x-2$	Solve the equation $4 x^{3}+12 x^{2}+5 x-6=0$
Solution	Solution

4. Теорема о делении с остатком	4. The remainder theorem
Теория При делении многочлена $p(x)$ на sx-t остаток является постоянной величиной и находится из условия $p\left(\frac{t}{s}\right)$	Theory When $\mathrm{p}(\mathrm{x})$ is divided by $s x-t$, the remainder is the constant $p\left(\frac{t}{s}\right)$
Пример Найдите остаток от деления $x^{3}-3 x+4$ на $2 x+3$.	Example Find the remainder when $x^{3}-3 x+4$ is divided by $2 x+3$
Решение 1) $p(x)=x^{3}-3 x+4$ 2) Величина остатка: $p\left(-\frac{3}{2}\right)=\left(-\frac{3}{2}\right)^{3}-3 \times\left(-\frac{3}{2}\right)+4=5 \frac{1}{8}$	Solution 1) $p(x)=x^{3}-3 x+4$ 2) $p\left(-\frac{3}{2}\right)=\left(-\frac{3}{2}\right)^{3}-3 \times\left(-\frac{3}{2}\right)+4=5 \frac{1}{8}$

Work paper			
Assignment 1	Assignment 2		
$\begin{array}{c}\text { Find the quotient and remainder when the first } \\ \text { polynomial is divided by the second. } \\ \begin{array}{l}x^{3}+3 x^{2}-2 x+1 \\ 2 x-1\end{array} \\ \hline \text { Solution }\end{array}$	$\begin{array}{c}\text { Find the quotient and remainder when the first } \\ \text { polynomial is divided by the second. } \\ 2 x^{3}+5 x^{2}-3 x+6 \\ 3 x+1\end{array}$		
Solution		$]$	
:---			

Геометрия на координатной плоскости

Coordinate geometry in the (x, y) plane

5. Нормаль к кривой в заданной точке	
Теория Прямая, проходящая через точку касания касательной к кривой и перпендикулярная к этой прямой, называется нормалью к кривой в заданной точке. Если тангенс угла наклона касательной к оси Ox равен m, то тангенс угла наклона нормали к оси Ох равен $-\frac{1}{m}$	Theory The line passing through the point of contact of the tangent with the curve which is perpendicular to the tangent is called the normal to a curve at a point. If the gradient of the tangent is m, then the gradient of the normal is $-\frac{1}{m}$

Пример Найти уравнение нормали к кривой $y=x^{2}$ в точке с абсциссой $x=-3$	Example Find the equation of the normal to the curve $y=x^{2}$ at the point for which $x=-3$
Решение 1) Формула тангенса угла наклона касательной к кривой $y=x^{2}$ есть $2 x$. Для нашего случая он составляет -6 2) Тангенса угла наклона нормали $-\frac{1}{-6}=\frac{1}{6}$ 3) Уравнение прямой, проходящей через точку $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ и имеющей тангенс угла наклона, имеет вид: $y-y_{1}=m\left(x-x_{1}\right)$ 4) Уравнение нормали в точке $(-3,9): y-9=\frac{1}{6}(x-(-3))$. После упрощения имеем: $6 y=x+57$	Solution 1) The gradient formula for the curve $y=x^{2}$ is $2 x$. So, the gradient is -6 2) The normal has a gradient of $-\frac{1}{-6}=\frac{1}{6}$ 3) The equation of the line through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with gradient m is $y-y_{1}=m\left(x-x_{1}\right)$ 4) Therefore the equation of the normal at ${ }_{(-3,9)}$ is $y-9=\frac{1}{6}(x-(-3))$, which simplifies to $6 y=x+57$

Work paper	
Assignment 1	Assignment 2
Find the gradient of the tangent to the graph of $y=x^{2}$, at each of the points with the given x-coordinate. a) 1 ; b) 4 ; c) 0	The y-coordinate of a point P on the graph $y=x^{2}+5$ is 9 . Find the two possible values of the gradient of the tangent to $y=x^{2}+5$ at P
Solution	Solution

Бином Ньютона	The binomial expansion
6. Треугольные числа	6. The triangle number sequence
Теория Число кружочков в «треугольных» образцах называют треугольными числами. К треугольным числам относятся 1, 3, 4, 10, 15, 21. Разность между двумя последовательными числами увеличивается на 1. Формула для нахождения суммы натуральных чисел от 1 до $\mathrm{r}: \frac{1}{2} r(r+1)$	Theory The numbers of dots in the triangular patterns are called triangle numbers. The triangle number are $1,3,4,10,15,21$. The difference between neighboring triangle numbers increases by 1 each time. The sum of the natural numbers from 1 to r is $\frac{1}{2} r(r+1)$
Пример Десятый образец треугольных чисел имеет 55 кружочков. Сколько будет кружочков в 11 образце?	Example The $10^{\text {th }}$ pattern of triangle numbers has 55 dots. How many dots will the $11^{\text {th }}$ pattern have?

Решение	Solution
1) Сумма натуральных чисел от 1 до r есть $\frac{1}{2} r(r+1)$, где $\mathrm{r}=11$.	1) The sum of the natural numbers from 1 to r is $\frac{1}{2} r(r+1), \mathrm{r}=11$
2) Одиннадцатый образец имеет $\frac{1}{2} 11(11+1)=66$	2) The $11^{\text {th }}$ pattern has $\frac{1}{2} 11(11+1)=66$ dots
кру	

Work paper	
Assignment 1	Assignment 2
Find the sum of the natural numbers from 1 to 100 inclusive	Find and simplify an expression for the sum of the natural numbers from ($\mathrm{n}+1$) to 2n inclusive
$\underline{\text { Solution }}$	$\underline{\text { Solution }}$

7. Последовательность Паскаля	7. Pascal sequence
Теория Последовательность Паскаля в общем виде: $\binom{n}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$, где $r=0,1,2,3 \ldots$	Theory The general definition of a Pascal sequence, whose terms are denoted by $\binom{n}{r}$, is $\binom{n}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$, where $r=0,1$, 2, 3 ...
Пример Составить последовательность Паскаля для n=5	Example Find the Pascal sequence for $n=5$
Решение $\begin{aligned} & p_{0}=1 ; \\ & p_{1}=\frac{5-0}{0+1} \times 1=5 ; p_{2}=\frac{5-1}{1+1} \times 5=10 ; p_{3}=\frac{5-2}{2+1} \times 10=10 . \\ & p_{4}=\frac{5-3}{3+1} \times 10=5 ; ~ p_{5}=\frac{5-4}{4+1} \times 5=1 ; ~ p_{6}=\frac{5-5}{5+1} \times 1=0 . \end{aligned}$ Последовательность Паскаля для $\mathrm{n}=5$ имеет вид: 5; $10 ; 10 ; 5 ; 1 ; 0$	Solution $\begin{aligned} & p_{0}=1 ; \\ & p_{1}=\frac{5-0}{0+1} \times 1=5 ; p_{2}=\frac{5-1}{1+1} \times 5=10 ; p_{3}=\frac{5-2}{2+1} \times 10=10 ; \\ & p_{4}=\frac{5-3}{3+1} \times 10=5 ; p_{5}=\frac{5-4}{4+1} \times 5=1 ; p_{6}=\frac{5-5}{5+1} \times 1=0 . \end{aligned}$ The Pascal sequence for $n=5$ is: $5 ; 10 ; 10 ; 5 ; 1 ; 0$

Work paper	
Assignment 1	Assignment 2
Find the Pascal sequence for $\mathrm{n}=6$	$\left.\begin{array}{c}\text { Use the formula }\binom{n}{r}=\frac{n!}{r!\times(n-1)!} \text { to write the following in } \\ \text { terms of factorials: } \\ \text { Solution } \\ \\ \hline\end{array} \begin{array}{l}11 \\ 4\end{array}\right)$ b) $\binom{11}{7}$

8. Треугольник Паскаля											8. Pascal's triangle										
Приведённая схема, составленная из коэффициентов последовательности Паскаля, называется треугольником Паскаля. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел.											Theory The complete pattern of Pascal sequence, without the trailing zeros, is called Pascal's triangle. Every number in this pattern except for the first is the sum of the two numbers most closely above it.										
Пример Рассчитать 4-й ряд треугольника Паскаля Решение 1) Последовательность Паскаля для $n=4: 5 ; 10 ; 10 ; 5 ; 1 ; 0$. 2) Треугольник Паскаля:											Example Continue Pascal's triangle for row number 4 Solution 1) The Pascal sequence for $n=4$ is: $5 ; 10 ; 10 ; 5 ; 1 ; 0$ 2) Pascal's triangle is										
					1											1					
			1		2		1							1		2		1			
		1		3		3		1					1		3		3		1		
	1		4		6		4		1			1		4		6		4		1	
1		5		10		10		5		1	1		5		10		10		5		

Work paper	
Assignment 1	Assignment 2
Continue Pascal's triangle for row number 6	Continue Pascal's triangle for row number 7
Solution	Solution

9. Сочетания. Определение факториала	9. Combinations and factorial notations
Теория 1) $n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 3 \times 2 \times 1$ 2) По определению, $0!=1$ 3) Количество способов выбора r элементов из группы n записывается ${ }^{\mathrm{n}}$ с или $\binom{n}{r}$ и вычисляется по формуле $\frac{n!}{(n-r)!r!}$	Theory 1) $n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 3 \times 2 \times 1$ 2) By definition, $0:=1$ 3) The number of ways of choosing r items from a group of n items is written ${ }^{\mathrm{n}} \mathrm{c}$, or $\binom{n}{r}$ and is calculated by $\frac{n!}{(n-r)!r!}$
Пример Найдите значения следующих выражений: a) ${ }^{3} C_{2}$ b) $\frac{10!}{9!}$	Example Find the value of the following: a) ${ }^{3} C_{2}$ b) $\frac{10!}{9!}$
Решение a) ${ }^{3} C_{2}=\frac{3!}{(3-2)!2!}=\frac{6}{1 \times 2}=3$ b) $\frac{10!}{9!}=\frac{1 \times 2 \ldots \times 9 \times 10}{1 \times 2 \ldots \times 9}=10$	Solution a) ${ }^{3} C_{2}=\frac{3!}{(3-2)!2!}=\frac{6}{1 \times 2}=3$ b) $\frac{10!}{9!}=\frac{1 \times 2 \ldots \times 9 \times 10}{1 \times 2 \ldots \times 9}=10$

Work paper	
Assignment 1	Assignment 2
Calculate: a) ${ }_{4!}$ b) ${ }^{10} C_{9}$	Calculate: Solution

10. Последовательность факториалов

Теория

1) Факториал числа n (обозначается n !) - это произведение всех натуральных чисел от 1 до n включительно.

Запомните $0!=1 ; 1!=1 r!=1 \times 2 \times 3 \times 4 \ldots r$
2) Формула для расчёта последовательности факториалов $f_{r+1}=f_{r} \times(r+1)$, где $\mathrm{r}=0,1,2,3 \ldots$
$f_{0}=1$
$f_{1}=f_{0} \times 1=1 \times 1=1$
$f_{2}=f_{1} \times 2=1 \times 2=2$
$f_{3}=f_{2} \times 2=2 \times 3=6$
Последовательность факториалов неотрицательных целых чисел начинается так:
$1,1,2,6,24,120,720,5040,40320,362880,3628800$, 39916800, 479001600, 6227020800.
3) Формулы Стирлинга для расчёта приближённого значения произведения n первых натуральных чисел
$n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

10. The factorial sequence

Theory

1) The factorial of a non-negative integer n, denoted by $n!$, is the product of all positive integers less than or equal to n .

Remember: $0!=1 ; 1!=1 r!=1 \times 2 \times 3 \times 4 \ldots r$
2) To get the factorial sequence use the formula $f_{r+1}=f_{r} \times(r+1)$, where $\mathrm{r}=0,1,2,3 \ldots$
$f_{0}=1$
$f_{1}=f_{0} \times 1=1 \times 1=1$
$f_{2}=f_{1} \times 2=1 \times 2=2$
$f_{3}=f_{2} \times 2=2 \times 3=6$
The first terms of the factorial sequence are:
$1,1,2,6,24,120,720,5040,40320,362880,3628800$, 39916800, 479001600, 6227020800,
3) Stirling's approximation (or Stirling's formula) is an approximation for large factorials.

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Пример

a) Упростите выражение $\frac{14!}{13!}$
b) Вычислите 5!, используя формулу Стирлинга

Решение

a) $\frac{14!}{13!}=\frac{1 \times 2 \times 3 \ldots 14}{1 \times 2 \times 3 \ldots 13}=14$
b) $5!\approx \sqrt{2 \cdot 3,14 \cdot 5}\left(\frac{5}{2,71}\right)^{5} \approx 199,999$

Example

a) Simplify the following $\frac{14 \text { ! }}{13!}$
b) Calculate 5!, using Stirling's formula

Solution

a) $\frac{14!}{13!}=\frac{1 \times 2 \times 3 \ldots 14}{1 \times 2 \times 3 \ldots 13}=14$
b) $5!\approx \sqrt{2 \cdot 3.14 \cdot 5}\left(\frac{5}{2.71}\right)^{5} \approx 199.999$

Work paper	
Assignment 1	Assignment 2
Write the following in terms of factorials: a) ${ }_{n(n-1)(n-2)}$ b) ${ }_{(n+6)(n+5)(n+4)}$ Calculate 6!, using Stirling's formula Solution Solution	

11. Разложение $(x+y)^{n}, n>0$

Теория

Для натурального n бином Ньютона имеет вид:
$(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\ldots+\binom{n}{n} y^{n}$

Пример

Найдите первые три члена в разложении $(1+x)^{22}$

11. Expansion of $(x+y)^{n}, n>0$

Theory

The binomial theorem states that, if number is a natural number $(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\ldots+\binom{n}{n} y^{n}$

Example

Find the first three terms in the expansion in ascending power of x of the following: $(1+x)^{22}$

Решение

Solution

1) $\binom{22}{0}=1$
2) $\binom{22}{1} x=\frac{22!}{1!(22-1)!} x=22 x$
3) $\binom{22}{2} x^{2}=\frac{22!}{2!(22-2)!} x^{2}=231 x^{2}$
4) $\binom{22}{0}=1$
5) $\binom{22}{1} x=\frac{22!}{1!(22-1)!} x=22 x$
6) $\binom{22}{2} x^{2}=\frac{22!}{2!(22-2)!} x^{2}=231 x^{2}$

Work paper

Assignment 1
Find the first three terms in the expansion, in ascending power of x, of $(1+2 x)^{8}$. By substituting $x=0.01$, find an approximation to 1.02^{8}

Solution

Assignment 2

Find the first three terms in the expansion, in ascending power of x, of $(2+5 x)^{12}$. By substituting a suitable value for x, find an approximation to 2.005^{12} to 2 decimal places

Solution

12. Разложение $(a+b x)^{n}, n>0$

Теория

1)

$$
\begin{aligned}
& (a+b x)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b x+\binom{n}{2} a^{n-2} b^{2} x^{2}+\binom{n}{3} a^{n-3} b^{3} x^{3} \ldots+\binom{n}{n} b^{n} x^{n} \\
& \text { 2) }\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Пример

Найдите первые четыре члена разложения (2-3x) ${ }^{10}$

Решение

$(2-3 x)^{10}=2^{10}+\binom{10}{1} \times 2^{9} \times(-3 x)+\binom{10}{2} \times 2^{8} \times(-3 x)^{2}$
$+\binom{10}{3} \times 2^{7} \times(-3 x)^{3} \ldots=$
$=1024-10 \times 512 \times 3 x+\frac{10 \times 9}{1 \times 2} \times 256 \times 9 x^{2}-$
$\frac{10 \times 9 \times 8}{1 \times 2 \times 3} \times 128 \times 27 x^{3}+\ldots=$
$=1024-15360 x+103680 x^{2}-414720 x^{3}+\ldots$

12. Expansion of $(a+b x)^{n}, n>0$

Theory

1)

$$
\begin{aligned}
& (a+b x)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b x+\binom{n}{2} a^{n-2} b^{2} x^{2}+\binom{n}{3} a^{n-3} b^{3} x^{3} \ldots+\binom{n}{n} b^{n} x^{n} \\
& \text { 2) }\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Example

Find the first four terms in the expansion of $(2-3 x)^{10}$

Solution

$(2-3 x)^{10}=2^{10}+\binom{10}{1} \times 2^{9} \times(-3 x)+\binom{10}{2} \times 2^{8} \times(-3 x)^{2}$
$+\binom{10}{3} \times 2^{7} \times(-3 x)^{3} \ldots=$
$=1024-10 \times 512 \times 3 x+\frac{10 \times 9}{1 \times 2} \times 256 \times 9 x^{2}-$
$\frac{10 \times 9 \times 8}{1 \times 2 \times 3} \times 128 \times 27 x^{3}+\ldots=$
$=1024-15360 x+103680 x^{2}-414720 x^{3}+$.

Work paper	
Assignment 1	Assignment 2
Find the first three terms in the expansion in ascending power of x of $(1-\mathrm{x})^{30}$	Find the first three terms in the expansion in ascending power of x of $(1-4 \mathrm{x})^{18}$
Solution	$\underline{\text { Solution }}$

