О.В. Моногарова, С.В. Мугинова, Д.Г. Филатова

Аналитическая химия

Задачи и вопросы

Учебное пособие

Под редакцией профессора Т.Н. Шеховцовой

Министерство образования и науки РФ

Допущено Учебно-методическим объединением по классическому университетскому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки ВО 040300 «Химия» (04.03.01) и специальности ВО 040500 «Фундаментальная и прикладная химия» (04.05.01)

Глава 1

ИОННЫЕ РАВНОВЕСИЯ В РАСТВОРАХ

1.1. СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ И МАССЫ

Теоретическая часть

- Общие представления о растворах. Истинные растворы.
- Концентрации растворов и способы их выражения. Понятия: массовая доля, молярная концентрация, молярная концентрация эквивалента, титр раствора.
- Приготовление растворов заданной концентрации.
- Расчет массы вещества в растворе заданной концентрации.

Решения задач

Задача 1. Какой объем (мл) концентрированной 94%-й серной кислоты с плотностью 1,831 г/см³ надо взять для приготовления 1 л 0,1000М раствора? Какова молярная концентрация эквивалента приготовленного раствора серной кислоты? Молярная масса $M(\mathrm{H_2SO_4}) = 98 \, \mathrm{г/моль}$.

Решение. Концентрированная кислота содержит 0,940 г $\rm H_2SO_4$ в одном грамме раствора, а масса серной кислоты в 1 мл равна 1,831 г.

Рассчитаем массу Н₂SO₄ в 1 мл раствора:

$$0,940 \ \Gamma/\Gamma \cdot 1,831 \Gamma/MЛ = 1,721 \ \Gamma/MЛ,$$

тогда молярная концентрация исходного раствора равна:

1,721 г/мл: 98,1 г/моль·1000 мл = 17,5 моль
$$H_2SO_4$$
в 1 л раствора, т.е. 17,5 моль/л.

Из пропорции следует:

$$0,1000$$
 моль/л· 1000 мл = 17,5 моль/л· x мл,

отсюда x = 5,71 мл.

По определению, молярная концентрация эквивалента — число эквивалентов растворенного вещества в 1 л раствора. Следовательно,

$$c_{_{\rm 9K}} = c \cdot \frac{1}{f_{_{\rm 9KB}}} \, .$$

Поскольку максимальное число протонов, которое может принимать участие в кислотно-основной реакции, равно 2, то $f_{\text{akg}} = 1/2$, поэтому

$$c_{\text{эк}}(\text{H}_2\text{SO}_4) = 2 \cdot 0{,}1000 = 0{,}2000$$
 моль/л.

Задача 2. Рассчитайте молярную концентрацию KNO₃ в растворе, полученном при добавлении 20 мл воды к 10 мл 0.3M раствора KNO₃. *Решение*. Суммарный объем полученного раствора равен:

$$10 \text{ мл} + 20 \text{ мл} = 30 \text{ мл},$$

т.е. раствор разбавили в 3 раза, следовательно, $c(KNO_3) = 0,1$ моль/л. Задача 3. Вычислите титр 0,1000 моль/л раствора CH,COOH.

Решение. Титр T показывает массу (г или мг) растворенного вещества в 1 мл раствора, поэтому рассчитаем количество вещества (моль) в 1 мл:

n=0,1000 моль/л : 1000=0,1000 моль/л : 1000=0,00001 моль/мл, тогда в граммах и миллиграммах:

$$m=0,00001$$
 моль/мл·60 г/моль = $0,00060$ г/мл = $0,6$ мг/мл, т.е. $T=0.6$ мг/мл.

Задача 4. В 750 мл раствора содержится 3,42 г $\rm K_4Fe(CN)_6 \cdot 3H_2O$. Рассчитайте титр этого раствора по $\rm Zn_2P_2O_7$, если при определении цинка протекает следующая реакция:

$$2\text{Fe(CN)}_6^{4-} + 3\text{Zn}^{2+} + 2\text{K}^+ \rightarrow \text{K}_2\text{Zn}_3[\text{Fe(CN)}_6]_2$$
 (т)
 $M(\text{K}_4\text{Fe(CN)}_6 \cdot 3\text{H}_2\text{O}) = 422,36, M(\text{Zn}_2\text{P}_2\text{O}_7) = 304,723 \ \text{г/моль}.$

Решение. Помимо титра T растворенного вещества, о котором шла речь в задаче 3, в практике химического анализа, особенно серийного, часто используют титр по определяемому веществу T (B/A) или условный титр. Он показывает массу (Γ) определяемого вещества A, которая соответствует 1 мл рабочего раствора вещества B, реагирующего с определяемым.

Массу определяемого вещества $(m_{_{\rm A}})$ рассчитывают по формуле:

$$m_{A} = T(B/A) \cdot V(B)$$
.

Титр по определяемому веществу связан с титром растворенного вещества по формуле:

$$T(B/A) = T(B) \cdot M_{2K}(A)/M_{2K}(B),$$

где $M_{\rm эк}({\rm A})$ и $M_{\rm эк}({\rm B})$ — молярные массы эквивалентов определяемого вещества и рабочего раствора (в данном случае ${\rm Zn_2P_2O_7}$ и ${\rm K_4Fe(CN)_6\cdot 3H_2O}$ соответственно).

Рассчитаем титр растворенного K_4 Fe(CN)₆·3H₂O:

$$T(K_4 \text{Fe (CN)}_6 \cdot 3\text{H}_2\text{O}) = m/V = 3,42/750 = 0,00456 \text{ г/мл.}$$

Молярная масса эквивалента вещества K_4 Fe(CN) $_6$ ·3 H_2 O равна 3/4 молярной массы эквивалента вещества $Zn_2P_2O_7$ в соответствии со стехиометрией реакции:

$$K_4 \text{Fe (CN)}_6 \cdot 3H_2 O = \text{Fe (CN)}_6^{4-} = 3/2 \text{ Zn}^{2+} = 3/4 \text{Zn}_2 P_2 O_7$$

Тогда

$$T(K_4Fe(CN)_6\cdot 3H_2O/Zn_2P_2O_7) = (0,00456\cdot 304,723\cdot 3)/4\cdot 422,36 = 2,47 \text{ мг/мл}.$$

Задача 5. Имеются исходный 0,1000M раствор $KMnO_4$ и мерные колбы объемом 100,0 мл. Какие объемы исходного раствора необходимо точно отмерить и перенести в колбы, чтобы приготовить растворы $KMnO_4$ с концентрациями $1,00\cdot10^{-3}$; $2,00\cdot10^{-3}$; $5,00\cdot10^{-3}$ моль/л?

Решение. 100,0 мл 1,00·10⁻³М раствора КМпО₄ содержат 100,0 мл × × 1,00·10⁻³ ммоль/мл = 0,1000 ммоль КМпО₄.

Объем x исходного раствора, содержащего такое количество вещества ${\rm KMnO_4}$, найдем из соотношения:

$$0,1000$$
 ммоль/мл· x мл = $0,1000$ ммоль, x = $1,00$ мл.

Аналогично, для приготовления остальных растворов потребуется взять 2,00 и 5,00 мл исходного раствора и разбавить до 100,0 мл.

1.2. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Теоретическая часть

• Идеальные и реальные химические системы. Активность. Ионная сила. Коэффициент активности. Равновесная и общая (аналитическая) концентрации, молярная доля.

- Закон действующих масс. Термодинамическая, реальная и условная константы равновесия, способы их выражения.
- Уравнение материального баланса. Условие электронейтральности раствора.

Решение задач

Задача 1. Запишите уравнение материального баланса для атомов серебра и азота в растворе аммиаката серебра (гидролизом пренебречь).

Решение. В растворе аммиаката серебра присутствуют следующие формы: Ag^+ , $Ag(NH_3)^+$, $Ag(NH_3)_2^+$, поэтому

$$c_{Ag} = [Ag^+] + [Ag(NH_3)^+] + [Ag(NH_3)_2^+],$$

 $c_N = [Ag(NH_3)^+] + 2 [Ag(NH_3)_2^+].$

Задача 2. Запишите уравнение электронейтральности для 10^{-8} M раствора HCl.

Решение. HCl — сильная кислота, в растворе полностью диссоциирована на H⁺ и Cl[−]. Так как раствор очень разбавлен ($c < 10^{-4}$ моль/л), пренебречь ионами H₃O⁺ из воды нельзя, поэтому [H₃O⁺] = [OH[−]] + [Cl[−]].

Задача 3. Рассчитайте ионную силу: а) в 0,01M растворе $SrCl_2$ и б) в 0,01M растворе $SrCl_2$ в присутствии 0,01M раствора KCl. Сравните значения коэффициентов активности иона Sr^{2+} в обоих случаях.

Решение. Запишем общую формулу для вычисления ионной силы:

$$I = 1/2 \sum_{i} [A_i] \cdot z_i^2.$$

- а) $I = 1/2(0.01 \cdot 2^2 + 0.02 \cdot 1^2) = 0.03$ моль/л, $\gamma = 0.60$ (см. приложение 1);
- б) $I=1/2(0,01\cdot 2^2+0,\,02\cdot 1^2+0,01\cdot 1^2+0,01\cdot 1^2)=0,04$ моль/л, $\gamma=0,48$ (см. приложение 1).

Коэффициент активности иона Sr^{2+} в присутствии 0,01M раствора KCl меньше.

Задача 4. Рассчитайте ионную силу 0.01 M раствора $Fe_2(SO_4)_3$. *Решение*. 1 моль $Fe_2(SO_4)_3 = 2$ моль $Fe^{3+} + 3$ моль SO_4^{2-} , поэтому

$$I = 1/2(0.02 \cdot 3^2 + 0.03 \cdot 2^2) = 0.15$$
 моль/л.

Задача 5. Рассчитайте активность иона ${\rm CrO_4^{2-}}$ в 0,02 M растворе ${\rm Na_2CrO_4}$.

Решение. Рассчитаем ионную силу 0,02M раствора Na,CrO₄:

$$I = 1/2(0.04 \cdot 1^2 + 0.02 \cdot 2^2) = 0.06$$
 моль/л.