БИООРГАНИЧЕСКАЯ ХИМИЯ РУКОВОДСТВО К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ

Под редакцией профессора Н.А. Тюкавкиной

УЧЕБНОЕ ПОСОБИЕ

Рекомендовано Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов медицинских вузов, обучающихся по специальностям 31.05.01 (060101) «Лечебное дело», 31.05.02 (060103) «Педиатрия», 32.05.01 (060105) «Медико-профилактическое дело», 31.05.03 (060201) «Стоматология»

ОГЛАВЛЕНИЕ

Введение	4
Часть 1. Основы строения и реакционной способности органических	
соединений	
Тема 1. Классификация и номенклатура органических соединений	7
Тема 2. Химическая связь и взаимное влияние атомов в органических	
соединениях	
Тема 3. Реакционная способность углеводородов	
Рубежный контроль № 1	36
Часть 2. Биологически важные реакции монофункциональных органических	
соединений	39
Тема 4. Реакционная способность спиртов, фенолов, тиолов	
и аминов	
Тема 5. Реакционная способность альдегидов и кетонов	51
Тема 6. Реакционная способность карбоновых кислот	
и их функциональных производных	
Рубежный контроль № 2	70
Часть 3. Поли- и гетерофункциональные соединения, участвующие	
в процессах жизнедеятельности	73
Тема 7. Стереохимические основы строения молекул органических	
соединений	73
Тема 8. Специфическая реакционная способность поли-	
и гетерофункциональных соединений	
Тема 9. Липиды	
Рубежный контроль № 3	01
Часть 4. Биополимеры и их структурные компоненты.	
Низкомолекулярные биорегуляторы	04
Тема 10. Углеводы (моносахариды)	
Тема 11. Углеводы (дисахариды и полисахариды)	
Тема 12. α-Аминокислоты, пептиды и белки	
Тема 13. Биологически важные гетероциклические соединения1	
Тема 14. Нуклеиновые кислоты. Нуклеотидные коферменты	
Рубежный контроль № 4	54
Тема 15. Низкомолекулярные биорегуляторы	57

ВВЕДЕНИЕ

Содержание учебной дисциплины «Биоорганическая химия» в соответствии с Примерной программой, утвержденной Министерством образования и науки Российской Федерации (2004 г.), представлено в виде четырех частей, каждая из которых подразделена на темы (таблица). Каждая часть заканчивается рубежным контролем.

Структура учебной дисциплины «Биоорганическая химия»

Номер части, темы	Название части, темы		
Часть 1	Основы строения и реакционной способности органических соединений		
Тема 1	Классификация и номенклатура органических соединений		
Тема 2	Химическая связь и взаимное влияние атомов в органических соединениях		
Тема 3	Реакционная способность углеводородов		
	Рубежный контроль № 1		
Часть 2	Биологически важные реакции монофункциональных органических соединений		
Тема 4	Реакционная способность спиртов, фенолов, тиолов и аминов		
Тема 5	Реакционная способность альдегидов и кетонов		
Тема 6	Реакционная способность карбоновых кислот и их функциональных производных		
	Рубежный контроль № 2		
Часть 3	Поли- и гетерофункциональные соединения, участвующие в процессах жизнедеятельности		
Тема 7	Стереохимические основы строения молекул органических соединений		
Тема 8	Специфическая реакционная способность поли- и гетерофункциональных соединений		
Тема 9	Липиды		
	Рубежный контроль № 3		
Часть 4	Биополимеры и их структурные компоненты. Низкомолекулярные биорегуляторы		
Тема 10	Углеводы (моносахариды)		
Тема 11	Углеводы (дисахариды и полисахариды)		
Тема 12	α-Аминокислоты, пептиды и белки		
Тема 13	Биологически важные гетероциклические соединения		
Тема 14	Нуклеиновые кислоты. Нуклеотидные коферменты		
	Pубежный контроль $№ 4$		
Тема 15	Низкомолекулярные биорегуляторы		

Часть 1

Основы строения и реакционной способности органических соединений

Тема 1. Классификация и номенклатура органических соединений

Студент должен уметь:

- 1. Определять по строению углеродного скелета принадлежность органических соединений к соответствующим классификационным группам.
- Устанавливать по структурной формуле наличие функциональной группы в молекуле и относить органическое соединение к определенному классу.
- 3. Составлять название органического соединения по номенклатуре ИЮПАК (заместительной и радикально-функциональной) и, наоборот, по названию составлять структурную формулу.
- 4. Представлять возможные структурные изомеры конкретного органического соединения.

Студент должен знать:

- 1. Критерии классификации органических соединений.
- 2. Основные классы органических соединений. Функциональные группы.
- 3. Основные правила систематической номенклатуры ИЮПАК. Термины родоначальная структура, заместители, характеристические группы.

Содержание темы:

Классификационные признаки органических соединений: строение углеродного скелета и природа функциональной группы. Функциональная группа. Структурная формула, структурные изомеры.

Общие формулы биологически важных классов органических соединений: спиртов, фенолов, тиолов, аминов, простых эфиров, сульфидов, альдегидов, кетонов, карбоновых кислот. Органические радикалы.

Основные правила составления названий по номенклатуре ИЮПАК для органических соединений; заместительная и радикально-функциональная номенклатура. Родоначальная структура, заместители, характеристические группы.

ОСНОВНЫЕ ИСТОЧНИКИ ИНФОРМАЦИИ

- 1. Учебник: глава 1, с. 13-28.
- 2. Руководство к лабораторным занятиям: тема 1, с. 14–27.

Учебник дополнительный: глава 1, с. 11-24.

3	Тема 1
**********	**************

Глоссарий (проверьте свою компетентность):

Структурные изомеры Структурные формулы

Заместительная номенклатура

Радикально-функциональная номенклатура

уксусная кислота

Родоначальная структура

Функциональная группа Характеристическая группа

Заместитель

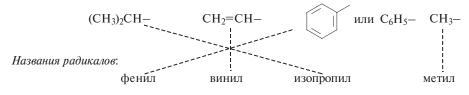
Органический радикал

АУДИТОРНАЯ РАБОТА

1. Запишите следующ	ие определения:	
Функциональная группа —		
Родоначальная структура		
Характеристическая групн	na —	
Органический радикал — .		
	ьная группа в каждом приведенном со сть к классу органических соединений	
Пример.		•••••••••••
Структурная формула:	Функциональная группа:	Класс:
CH ₃ CH ₂ OH	ОН – гидроксильная группа	спирты
2.1. <i>a</i>) CH ₃ COOH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ε) C ₂ H ₅ SH

формальдегид

анилин


этантиол

2.2. *a*)
$$OC_2H_5$$
 OC_2H_5 $OC_3CH_2CH_2COOH$ $OCCOOH$ OCC

- **2.3.** *a*) $CH_3CH_2CH_2CH_2COOH$ *б*) CH_3NHCH_3 *в*) $C_2H_5SC_2H_5$ *г*) оСН $_3$ валериановая кислота диметиламин диэтилсульфид анизол
- **2.4.** *a*) СООН δ) $CH_3CH_2NH_2$ δ) CH_3OH δ) CH_3-C-CH_3 O Онзойная кислота этиламин метанол ацетон
 - а) Функциональная группа: Класс:
 - б) Функциональная группа: Класс:
 - в) Функциональная группа: Класс:
- г) Функциональная группа: Класс:
 - 3. Соедините линией структурные формулы радикалов и их названия.

Пример.

Структурные формулы радикалов:

3.1. Структурные формулы радикалов:

$$C_2H_5-CH_3-(CH_3)_3C-CH_2=CH-$$

Названия

радикалов: метил этил винил трет-бутил бензил фенил


3.2. Структурные формулы радикалов:

$$CH_{3} CH_{3}CH_{2}CH_{2} (CH_{3})_{2}CH CH_{2}=CH-CH_{2}-$$

Названия

радикалов: пропил метил изопропил аллил фенил бензил

4. Допишите функциональные группы или углеводородные радикалы в структурные формулы в соответствии с названиями производных бензола:

5. Заполните пробелы, используя таблицу 1.3 (Учебник, с. 22).

	Характеристическая группа	l
формула*	префикс	суффикс
-OH	гидрокси-	
		-тиол
	амино-	
− <u>C</u> 00H		
-СООН	карбокси-	
-CH=O		-аль
	оксо-	-OH

^{*} Подчеркнутый атом углерода включается в состав родоначальной структуры.

6. Составьте по заместительной номенклатуре названия приведенных соединений, используя таблицы 1.2 и 1.3 (Учебник, с. 22).

Старшая характеристическая группа: карбоксильная группа, отражаемая сочетанием «овая кислота».

Родоначальная структура: пропан.

Нумерация осуществляется так, чтобы карбоксильная группа получила наименьший номер.

Заместитель: гидроксильная группа, отражаемая префиксом «гидрокси» с указанием ее положения (атом С-2).

Название по заместительной номенклатуре: 2-гидроксипропановая кислота (тривиальное название — молочная кислота).

6.1. *a*)
$$CH_2 = CH - CH = CH_2$$
 b) $CH_3 - C - C_2H_5$ *b*) $CH_3 - CH - COOH$ O NH_2

6.2. a)
$$CH_2=C-CH=CH_2$$
 b) CH_3-C b) CH_3-CH_2 b) CH_3-CH_3 b) CH_3-CH_3

e) HOCH₂CH₂OH d) CH₃

а) Старшая характеристическая группа:
Родоначальная структура:
Структурная формула и нумерация:
Заместитель(и):
Название:

12	Тема Тема
б) Старшая характеристическая группа:	
Родоначальная структура:	
Структурная формула и нумерация:	
Заместитель(и):	
Название:	
в) Старшая характеристическая группа:	
Родоначальная структура:	
Структурная формула и нумерация:	
Заместитель(и):	
Название:	
г) Старшая характеристическая группа:	
Родоначальная структура:	
Структурная формула и нумерация:	
Заместитель(и):	
Название:	
д) Старшая характеристическая группа:	
Родоначальная структура:	
Структурная формула и нумерация:	
Заместитель(и):	
Название:	
7. Составьте структурные формулы соединений по назватаблицы 1.2 и 1.3 (Учебник, с. 22).	ниям, использу
Пример. 2-Амино-3-гидроксибутановая кислота. Родоначальная структура: бутан (4 атома углерода). Суффикс: сочетание «овая кислота» отражает наличие	карбоксильно

 $Cy\phi\phi$ икс: сочетание «овая кислота» отражает наличие карбоксильной группы, атом углерода которой включен в родоначальную структуру.

Нумерация осуществляется так, чтобы карбоксильная группа получила наименьший номер.

Префиксы: «амино» и «гидрокси» отражают наличие групп NH₂ и OH соответственно.

Структурная формула и нумерация:

$$\overset{4}{\text{CH}_{3}} - \overset{3}{\overset{2}{\overset{2}{\text{CH}}}} - \overset{1}{\overset{2}{\overset{1}{\text{COOH}}}}$$
OH NH₂

⁴ сн ₃ –сн–сн–соон он NH ₂
7.1. <i>а</i>) 3-Метил-3-этилгептан; <i>б</i>) 2,6-диаминогексановая кислота; <i>в</i>) пропанол-2; <i>г</i>) <i>о</i> -аминофенол. 7.2. <i>а</i>) 2-Метилбутадиен-1,3; <i>б</i>) пентанон-3; <i>в</i>) этандиол-1,2; <i>г</i>) <i>п</i> -ами-
нобензойная кислота. 7.3. <i>a</i>) Гексатриен-1,3,5; <i>б</i>) 2-амино-3-метилпентановая кислота; <i>в</i>) метантиол; <i>г</i>) м-гидроксибензальдегид.
7.4. <i>а</i>) 2,2-Диметилбутан; δ) 2-оксопентандиовая кислота; ϵ) 2-амино-3-фенилпропановая кислота; ϵ) пропеналь.
а) Родоначальная структура:
Суффикс:
Нумерация:
Префикс(ы):
Структурная формула:
б) Родоначальная структура:
Суффикс:
Нумерация:
Префикс(ы):
Структурная формула:

14	******	*****	Тема 1
в) Родоначал	ьная структура:		
Суффикс:			
Нумерация:			
Префикс(ы):			
Структурная	формула:		
г) Родоначали	ьная структура:		
Суффикс:			
, ,			
Префикс(ы):			
Структурная	формула:		
8. В виде бензола?	каких изомеров мог	гут существовать ди	замещенные производные
Пример. С	$CH_3 - C_6H_4 - OH$		
	-		и 1,4- (соответственно
. ,	и <i>пара-</i> положения).		ую и метильную группы,
_	_	-	етилфенол. Тривиальное
название эти	их производных — в	крезолы.	
Структурн	ные формулы изомеро		
	CH ₃	CH_3	OH
			CH ₃
	OH	OH	C113 ~
Названия:	2-метилфенол (<i>o</i> -крезол)	3-метилфенол (<i>м</i> -крезол)	4-метилфенол (<i>n</i> -крезол)

.....

- 8.1. Изомеры гидроксибензойных кислот.
- 8.2. Изомеры аминобензойных кислот.
- 8.3. Изомеры аминофенолов.
- 8.4. Изомеры аминобензолсульфоновых кислот.

Возможное	е расположение замест	ителей:	
Структурн	ные формулы:		
Названия:			

9. Впишите в таблицу структурные формулы и названия соответствующих соединений:

орто-	мета-	пара-
1		

16 ***	******	*****	Тема 1
фу		ные формулы соединений, туре, используя таблицу 1	
		μ : две группы CH_3 (умнож μ	
	10.2. <i>a</i>) Диэтилсульфи 10.3. <i>a</i>) Этилбромид;	ϕ фир; δ) метилфенилкетоид; δ) дифенилкетон; ϵ) δ) диметилкетон; ϵ) три δ) диэтилсульфид; ϵ) ди	диизопропиловый эфир. этиламин.
a)	Углеводородные радикал Класс соединения, общая Структурная формула:	ы:	
б)	Углеводородные радикал Класс соединения, общая Структурная формула:		
<i>в</i>)		ы:я формула класса:	

ТЕКУЩИЙ КОНТРОЛЬ (примерный вариант)

- 1. Напишите формулу соединения, содержащего циклогексановое кольцо и гидроксильную группу, и определите, к какому классу оно относится.
- 2. Назовите аланин $CH_3CH(NH_2)COOH$ по заместительной номенклатуре. Какие функциональные группы входят в состав аланина?
- 3. Напишите структурную формулу 2-аминоэтанола.

САМОСТОЯТЕЛЬНАЯ ВНЕАУДИТОРНАЯ РАБОТА

Задания по теме 2.

Руководство к лабораторным занятиям: тема 2, с. 27-41.

```
Вариант 1:
                2.3.1,
                         2.4.1,
                                  2T.07,
                                           2T.14.
Вариант 2:
                2.3.10,
                         2.4.2,
                                  2T.04,
                                           2T.14.
Вариант 3:
                         2.4.2,
                                  2T.06,
                                          2T.14.
                2.3.5,
Вариант 4:
                2.3.8,
                         2.4.2,
                                  2T.05,
                                           2T.14.
Вариант 5:
                2.3.7,
                         2.4.2,
                                  2T.08,
                                          2T.14.
Вариант 6:
                2.3.2,
                         2.4.2,
                                  2T.10,
                                           2T.14.
                                          2T.14.
Вариант 7:
                2.3.3,
                         2.4.7,
                                  2T.07,
Вариант 8:
                2.3.6,
                                  2T.11,
                                          2T.14.
                         2.4.8,
Вариант 9:
                2.3.9,
                         2.4.9,
                                  2T.09,
                                          2T.14.
Вариант 10:
                2.3.4,
                         2.4.8,
                                  2T.08,
                                           2T.14.
Вариант 11:
                2.3.3,
                         2.4.6,
                                  2T.11,
                                           2T.14.
Вариант 12:
                2.3.6,
                         2.4.7,
                                  2T.09,
                                           2T.14.
```

Тема 2. Химическая связь и взаимное влияние атомов в органических соединениях

Студент должен уметь:

- 1. Определять тип гибридизации атома углерода в насыщенных, ненасыщенных и ароматических соединениях.
- 2. Изображать графически электронное строение одинарных и двойных углерод-углеродных связей, π , π и p, π -сопряжения в конкретных соединениях в результате перекрывания соответствующих атомных орбиталей.
- 3. Определять влияние индуктивного и мезомерного эффектов электронодонорных и электроноакцепторных заместителей на формирование в молекуле потенциальных реакционных центров.

Студент должен знать:

- 1. Типы гибридизации атомных орбиталей углерода.
- Виды ковалентных связей: σ- и π-связи, их основные характеристики.
 Электронное строение систем с открытой (бутадиен-1,3, аллильные ионы и радикал) и замкнутой (бензол) цепью сопряжения. Сопряжение как фактор повышения стабильности.
- 3. Электронные эффекты заместителей и их влияние на распределение электронной плотности в молекуле.

Содержание темы:

Электронное строение атома углерода. Типы гибридизации атомных орбиталей. Ковалентные σ - и π -связи, их основные характеристики: длина, энергия, полярность. Шкала электроотрицательности элементов-органогенов. Донорно-акцепторные и водородные связи.

Виды сопряжения: π , π - и p, π -сопряжение. Системы с открытой цепью сопряжения: бутадиен-1,3; карбоксильная группа; аллильные ионы и радикал. Системы с замкнутой цепью сопряжения. Ароматичность аренов. Термодинамическая стабильность сопряженных систем.

Индуктивный и мезомерный электронные эффекты заместителей. Электронодонорные и электроноакцепторные заместители.

ОСНОВНЫЕ ИСТОЧНИКИ ИНФОРМАЦИИ

- 1. Учебник: глава 2, с. 29-46.
- 2. Руководство к лабораторным занятиям: тема 2, с. 27–41.
- 3. Конспекты лекций.

Учебник дополнительный: глава 2, с. 27–47.

Глоссарий (проверьте св	вою компетентность):
-------------	--------------	----------------------

Гибридизация атомных орбиталей π,π-Сопряжение р,π-Сопряжение Ковалентная связь

σ-Связь Ароматические соединения

π-Связь Электроноакцепторные заместители Делокализованная ковалентная связь Электронодонорные заместители

Электроотрицательность Индуктивный эффект Сопряжение Мезомерный эффект

АУДИТОРНАЯ РАБОТА

1. 3	Запишите	следующие	определения:
------	----------	-----------	--------------

σ-Связь —
π-Связь —
Делокализованная связь —
Сопряжение —
Электроотрицательность —
Индуктивный эффект —
Мезомерный эффект —

- 2. Выберите правильные утверждения и внесите их номера в соответствующие колонки таблицы.
 - 1) три гибридные орбитали;
 - 2) тетраэдрическое строение;
 - 3) одна негибридизованная орбиталь;
 - 4) линейное расположение гибридных орбиталей;
 - 5) негибридизованная орбиталь в перпендикулярной плоскости;
 - 6) две негибридизованные орбитали;
 - 7) четыре гибридные орбитали;
 - 8) тригональное строение;
 - 9) две гибридные орбитали;
 - 10) плоское расположение гибридных орбиталей.

Правильные утверждения для углерода в указанном типе гибридизации				
sp^3	sp^2			

3. Какой тип гибридизации характерен для каждого атома углерода в соединениях а) и б)?

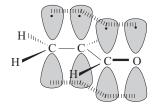
 $Tun sp^3$ -гибридизации:

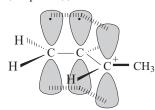
 sp^3 -Гибридизованный атом углерода имеет четыре гибридные орбитали и образует четыре σ-связи.

 $Tun sp^2$ -гибридизации:

 sp^2 -Гибридизованный атом углерода имеет три гибридные орбитали и образует три σ-связи, одна из которых является частью двойной связи.

3.1 a)
$$CH_2 = C - C OOH OH OOH_2 = CHCH_2OCH_3$$


4
$$_{a)}$$
 CH₃CH₂-C $_{OH}$ $_{OH}$ $_{OH}$ CH₂=CHCH₂CHCH₃ CH₃


4. Графически покажите образование делокализованной связи в соответствующих структурных фрагментах соединений а) и б). Укажите вид сопряжения.

Пример.
$$a$$
 CH_2 = $CH-C$ O CH_2 = $CH-CH-CH_3$

Образование делокализованной связи:

а) четырехцентровая делокализованная связь б) трехцентровая делокализованная связь

катион аллильного типа

Вид сопряжения: *а*) π,π -сопряжение; *б*) p,π -сопряжение.

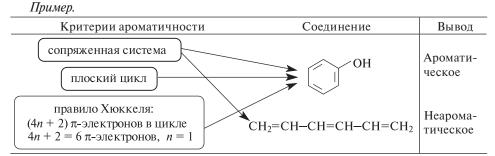
4.1. *a*)
$$CH_3 - CH - CH = O$$

$$\delta$$
) CH₂=CH-CH=CH₂

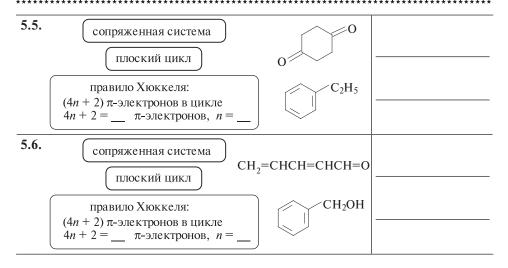
4.2.
$$a$$
) $CH_2=CH-CH_2$ b) $CH_3CH=CH-CH=O$

4.3. *a*)
$$CH_3 - C - COOH$$
 b) $CH_2 = CH - \dot{C}H - CH_3$

$$O) CH2=CH-N(CH3)2$$


$$O$$
 CH₂=CH-CH-CH=CH

4.6. a)
$$CH_2 = CH - CH_2^+$$


Образование делокализованной связи:

5. Установите в соответствии с критериями ароматичности принадлежность одного из приведенных соединений к ароматическим.

.....

			ъ
	Критерии ароматичности	Соединение	Вывод
5.1.	сопряженная система		
	правило Хюккеля: $(4n+2)\pi$ -электронов в цикле $4n+2=$ π -электронов, $n=$	NH ₂	
5.2.	сопряженная система	ОН	
	правило Хюккеля: $(4n+2)\pi$ -электронов в цикле $4n+2=$ π -электронов, $n=$	СООН	
5.3.	сопряженная система	CH ₃	
	правило Хюккеля: $(4n + 2) \pi$ -электронов в цикле $4n + 2 = $ π -электронов, $n = $	СООН	
5.4.	сопряженная система	CH=0	
	правило Хюккеля:	НО	

6. Какие из приведенных соединений (*a—г*) являются сопряженными? Графически изобразите смещение электронной плотности в молекулах. Укажите вид и знак электронных эффектов функциональных групп или алкильного радикала и определите, являются они электронодонорными (ЭД) или электроноакцепторными (ЭА).

Пример. а) Пропеналь; б) пентан; в) фенол; г) этанол.

Структурные формулы:

Вид сопряжения: а) π,π -сопряжение в открытой системе; б) несопряженная; в) π,π -сопряжение в замкнутой системе и p,π -сопряжение гидроксильной группы с бензольным кольцом; ϵ) несопряженная.

Распределение электронной плотности:

a)
$$\delta + CH_2 = CH \rightarrow C \rightarrow C \rightarrow CH_2$$
 $\delta \rightarrow CH_3 - CH_2 - CH_2 - CH_2 - CH_3$ $\delta \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_2 \rightarrow CH_3$ $\delta \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH$

Электронные эффекты

 6.1. <i>a</i>) Пропеновая кислота; <i>δ</i>) толуол; <i>в</i>) бензальдегид; <i>ε</i>) бутен-1. 6.2. <i>a</i>) Пропен; <i>δ</i>) анилин; <i>в</i>) бензойная кислота; <i>ε</i>) пропаналь. 6.3. <i>a</i>) Фенол; <i>δ</i>) пентен-1; <i>в</i>) бутен-2-овая кислота; <i>ε</i>) бензойная кис-
лота. 6.4. <i>a</i>) Этилбензол; <i>б</i>) пропен; <i>в</i>) анилин; <i>г</i>) пропеновая кислота. 6.5. <i>a</i>) Толуол; <i>б</i>) бензальдегид; <i>в</i>) бутен-1; <i>г</i>) уксусная кислота. 6.6. <i>a</i>) Пентен-1; <i>б</i>) пропеновая кислота; <i>в</i>) бензойная кислота;
г) метоксибензол.
Структурные формулы и распределение электронной плотности:
<i>a</i>) <i>δ</i>)
e)
Вид сопряжения:
a); b); c)
Электронные эффекты, ЭД или ЭА:
a); b); z)
7. Пользуясь таблицей 2.2 (Учебник, с. 46), в приведенных соединениях определите электронодонорный и электроноакцепторный характер функциональных (или алкильных) групп. Внесите соединения а)—и) в соответствующие колонки таблицы.
a) $CH_2=CHC$ O B) $CH_2=CHCH_3$ D 0 D 1 D 1 D 2 D 3 D 3 D 4 D 4 D 5
Электронные эффекты
e) CH_3 —OH

Соединения, содержащие заместители					
электронодонорные электроноакцепторные					

ТЕКУЩИЙ КОНТРОЛЬ (примерный вариант)

1. Какие из приведенных соединений содержат сопряженные фрагменты? Укажите вид сопряжения.

- 2. Приведите критерии ароматичности и обоснуйте принадлежность анилина к ароматическим соединениям.
- 3. Приведите строение следующих соединений: бензойная кислота, фенол, пропеновая кислота. Укажите вид и знак электронных эффектов. Обозначьте эффекты графически.

САМОСТОЯТЕЛЬНАЯ ВНЕАУДИТОРНАЯ РАБОТА

Задания по теме 3.

Руководство к лабораторным занятиям: тема 5, с. 77-80; тема 6, с. 83-97; тема 7, с. 97-111.

Вариант 1:	5.2.1,	6.3.1,	7.2.8,	5T.12,	6T.05.
Вариант 2:	5.2.8,	6.1.4,	7.1.1,	6T.04,	7T.03.
Вариант 3:	5.2.3,	6.1.8,	7.2.3,	5T.09,	7T.08.
Вариант 4:	5.2.7,	7.4.2,	7.1.4,	5T.07,	6T.10.
Вариант 5:	5.2.4,	6.3.5,	7.2.5,	6T.09,	7T.04.
Вариант 6:	5.2.2,	6.3.2,	7.1.5,	7T.13,	6T.08.
Вариант 7:	5.2.6,	6.3.3,	7.2.2,	6T.03,	7T.14.
Вариант 8:	5.2.5,	6.3.7,	7.1.8,	6T.01,	7T.05.
Вариант 9:	7.4.1,	6.3.5,	7.2.6,	5T.07,	6T.07.
Вариант 10:	6.1.2,	6.3.4,	7.2.7,	5T.11,	7T.02.
Вариант 11:	6.1.6,	7.1.3,	7.1.7,	5T.09,	6T.03.
Вариант 12:	6.1.7,	7.2.1,	7.2.9	5T.05,	6T.02.

Тема 3. Реакционная способность углеводородов

Студент должен уметь:

- 1. Приводить уравнения реакций радикального замещения для алканов на примере реакций окисления с получением гидропероксидов.
- 2. Оценивать влияние статического и динамического факторов на региоселективность реакций электрофильного присоединения к кратным связям. Приводить уравнения реакций гидратации алкенов с описанием механизма.
- Использовать правила ориентирующего влияния заместителей для реакций электрофильного замещения в производных аренов. Приводить уравнения реакций электрофильного замещения на примере реакций алкилирования и галогенирования.
- 4. Приводить уравнения реакций окисления алкенов и гомологов бензола.
- 5. Экспериментально проводить качественные реакции с бромной водой и перманганатом калия для доказательства ненасыщенности соединения с объяснением химической основы реакции и наблюдаемого результата.

Студент должен знать:

- 1. Гомолитический (радикальный) и гетеролитический (ионный) разрыв химической связи. Термины: субстрат, реагент, реакционный центр.
- 2. Электронное строение свободных радикалов, карбокатионов и карбанионов и факторы, обусловливающие их термодинамическую стабильность.
- 3. Свободнорадикальные реакции в алканах, цепной характер этих реакций.
- 4. Реакции электрофильного присоединения в алкенах, общий механизм, кислотный катализ. Причины региоселективности. Правило Марковникова.
- 5. Реакции электрофильного замещения в аренах, общий механизм. Алкилирование, галогенирование и сульфирование бензола и его производных.
- Правила ориентации заместителей и их влияние на реакционную способность производных бензола.
- 7. Реакции окисления двойных углерод-углеродных связей в зависимости от условий и реакции окисления гомологов бензола.

Содержание темы:

Классификация органических реакций по результату (замещение, присоединение, элиминирование, окислительно-восстановительные) и по механизму — радикальные и ионные (электрофильные, нуклеофильные). Субстрат, реагент, реакционный центр.

Промежуточные частицы — свободные радикалы, карбокатионы и карбанионы, их электронное строение и факторы стабильности.

Реакции радикального замещения в насыщенных углеводородах на примере образования гидропероксидов. Реакции электрофильного присоединения в алкенах, механизм реакции на примере реакции гидратации, кислотный катализ.

Присоединение галогеноводородов, галогенов, серной кислоты.

Региоселективность реакций электрофильного присоединения. Правило Марковникова.

Реакции электрофильного замещения с участием ароматических субстратов на примере реакций алкилирования. Влияние заместителей на реакционную способность производных бензола. Ориентирующее влияние заместителей.

Качественные реакции для обнаружения кратных связей в анализируемом объекте.

ОСНОВНЫЕ ИСТОЧНИКИ ИНФОРМАЦИИ

- 1. Учебник: глава 3, с. 47-70.
- 2. Руководство к лабораторным занятиям: темы 5-7, с. 73-111.
- 3. Конспекты лекций.

Учебник дополнительный: глава 6, с. 116-144; глава 9, с. 220-221, 223-224.

Глоссарий (проверьте свою компетентность):

Реакционная способность Электронодонорные заместители

Реакционный центр Гидратация

Субстрат Региоселективность Радикальные реагенты Правило Марковникова

 Гидропероксиды
 Алкилирование

 Электрофильные реагенты
 Галогенирование

 Нуклеофильные реагенты
 Сульфирование

 Радикальные реакции
 Окислители

Электроноакцепторные заместители

АУДИТОРНАЯ РАБОТА

1. Запиші	ите следующие определения:	
Субстрат —		

Радикальные реагенты (приведите пример) —	
Электрофильные реагенты (приведите пример) —	
Нуклеофильные реагенты (приведите пример) —	

28	****	*****	****	******	****	Тема 3
Регио	селе	ктивность —				
Праві	ило 1	Марковникова —				
Карбо	кат	ионы —				
и расі 	поло	жите их в ряд г	10 yn	ые свободные радикалы в меньшению относительно 	ой с	габильности.
<i>Ти</i> ный.	іп св	СІ ободного радика. еньшения стабил	H ₃ na: а пьнос)— третичный, б)— пе ти свободных радикалов:	рви	чный, <i>в</i>)— аллиль-
2.1.	a)		б)	CH ₃ –CH–CH ₃	<i>6</i>)	ĊH-CH ₃
2.2.	a)	CH ₃ CH ₂ -CH ₂	б)	CH ₃ CH ₂ -CH-CH ₃	<i>6</i>)	CH ₂ =CH-CH ₂ ·
2.3.	a)	CH ₃ -CH ₂ ·	б)	CH ₃ -Ċ-CH ₃ CH ₃	6)	CH ₂ ·
2.4.	a)	CH ₃	б)	ĊH	6)	CH ₃ CH ₂ -CH-CH ₃
2.5.	a)	(CH ₃) ₂ CH	б)	CH ₂ =CH-CH-CH=CH ₂	<i>в</i>)	CH ₃ -CH ₂ ·
2.6.	a)	CH ₃ CH ₂ -CH ₂	б)	· CH ₃ CH ₂ CH ₂ -CH-CH ₃	<i>в</i>)	· CH ₂ =CH-CH-CH ₃

Реакционная способность углеводород	ļОВ *****	2	9
Тип свободного радикала: a) — в) —		; <i>б</i>) –	_;
Ряд уменьшения стабильности свобоб	дных ра	радикалов: > >	
3. Какой гидропероксид может обра ного окисления приведенного соединен		гься в условиях свободнорадикалі	b-
			••
Пример. Пентадиен-1,4. Структурная формула: CH_2 = CH - C Наиболее способная к окислению связ так как при этом промежуточно обра Наиболее стабильный промежуточны CH_2 = CH - $\dot{C}H$ - CH = CH_2 аллильно Схема реакции:	вь: С— ізуется ый свобо	–Н в метиленовой группе –СН ₂ - я наиболее стабильный радикал <i>бодный радикал</i> :	
радикалі	тализато ъного про	nouecca	
chi chi chi chi chi chi			2
пентадиен-1,4		гидропероксид	
3.1. Бутилбензол.	3.4.	. Бутен-1.	•
3.2. Диизопропиловый эфир.			
3.3. Изопропилбензол (кумол).	3.6.	. Гексадиен-1,4.	
Структурная формула:			
Наиболее способная к окислению связь:			
Наиболее стабильный промежуточный с	евободн	ный радикал:	_
Тип радикала			
Схема реакции:			

4. Какой продукт образуется в результате реакции гидратации приведенного соединения? Обоснуйте региоселективность реакции на основе статического и динамического факторов.

Пример. 2-Метилбутен-2.

Реакция с описанием последовательности стадий:

Общая схема реакции:
$$_{\text{CH}_3-\text{C}=\text{CHCH}_3}$$
 + $_{\text{H}_2\text{O}}$ $\xrightarrow{\text{H}^+}$ $\xrightarrow{\text{CH}_3-\text{C}-\text{CH}_2\text{CH}_3}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{2-метилбутен-2}}$ $\xrightarrow{\text{2-метилбутанол-2}}$

4.1. Бутен-2-овая кислота.

4.4. 3-Метилбутен-1.

4.2. 2-Метилбутен-1.

4.5. Бутен-1.

4.3. 1-Метилшиклогексен.

4.6 Пропеналь.

Реакция с описанием последовательности стадий:

Общая схема реакции:

5. Какие продукты образуются при окислении приведенных ненасыщенных соединений в указанных условиях?

Пример.

- *а*) Окисление циклогексена пербензойной кислотой (эпоксидирование) с последующим гидролизом продукта окисления;
 - б) окисление бутена-1 в жестких условиях.

Схема реакции а) и названия продуктов:

Схема реакции б) и названия продуктов:

- **5.1.** *а*) Окисление 2-метилпентена-2 в жестких условиях; δ) окисление пропена водным раствором перманганата калия (реакция Вагнера).
- **5.2.** *а*) Окисление пентена-1 пербензойной кислотой с последующим гидролизом продукта окисления; δ) окисление бутена-2 водным раствором перманганата калия (реакция Вагнера).
- **5.3.** *а*) Окисление *цис*-бутендиовой (малеиновой) кислоты водным раствором перманганата калия (реакция Вагнера); δ) окисление 2-метилпентена-2 в жестких условиях.
- **5.4.** *а*) Окисление циклопентена в жестких условиях; δ) окисление 1,2-дифенилэтилена пербензойной кислотой с последующим гидролизом продукта окисления.
- **5.5.** *а*) Окисление бутена-2 пербензойной кислотой с последующим гидролизом продукта окисления; δ) окисление пропена в жестких условиях.
- **5.6.** *а*) Окисление 3-фенилпропена водным раствором перманганата калия (реакция Вагнера); δ) окисление бутена-2 в жестких условиях.

Схема реакции а) и названия продуктов:

Схема реакции б) и названия продуктов:

6. Учитывая ориентирующее влияние заместителя в бензольном кольце, укажите, какие продукты образуются в результате реакции электрофильного замещения.

Пример. Алкилирование анизола (метоксибензола) пропеном.

Генерирование электрофильного реагента:

Влияние заместителя:

Электронные эффекты группы ОСН $_3$: +M>-I Ориентант I рода

Схема реакции и названия продуктов:

$$OCH_3 + CH_3 - CH = CH_2$$
 $H_3PO_4 + CH_3 - CH_3 - CH_3 + CH_3 - CH_3$

анизол о-изопрошиланизол п-изопрошиланизол

- **6.1.** Алкилирование толуола *тет*-бутиловым спиртом.
- 6.2. Бромирование этилбензола.
- 6.3. Хлорирование бензолсульфоновой кислоты.
- 6.4. Алкилирование этоксибензола 2-хлоропропаном.
- 6.5. Сульфирование бензойной кислоты.
- 6.6. Алкилирование изопропилбензола (кумола) метилхлоридом.

Генерирование электрофильного реагента:

Влияние	заместителя:
---------	--------------

Электронные эффекты группы ______ Ориентант _____ рода.

Схема реакции и названия продуктов:

7. Какие продукты образуются при окислении приведенного ароматического соединения?

Пример. Окисление *n*-этилтолуола.

Выбор в молекуле места окисления. В замещенных аренах ближайший к кольцу атом углерода (α -атом) окисляется в карбоксильную группу. β -Атом углерода, если он концевой в боковой цепи, превращается в диоксид углерода; если находится в более длинной боковой цепи — в карбоксильную группу.

Схема реакции и названия продуктов:

7.1. *м*-Ксилол.

7.3. *n*-Ксилол.

7.5. м-Диэтилбензол.

7.2. Пропилбензол.

7.4. Изопропилбензол.

7.6. *о*-Бутилтолуол.

Схема реакции и названия продуктов:

ТЕКУЩИЙ КОНТРОЛЬ (примерный вариант)

- 1. Какой гидропероксид может образоваться при свободнорадикальном окислении бутена-1? Напишите схему реакции и объясните, чем обусловлено такое направление реакции радикального замещения.
- 2. Приведите схему и опишите по стадиям механизм реакции гидратации 2-метилпропена с учетом статического и динамического факторов.
- 3. Оцените ориентирующее влияние заместителей в бензольном кольце в молекулах толуола и бензойной кислоты в реакциях электрофильного замещения. Напишите схемы реакций алкилирования толуола пропеном и бромирования бензойной кислоты.

ЛАБОРАТОРНАЯ РАБОТА

Руководство к лабораторным занятиям: тема 6, с. 94-95; тема 7, с. 110-111.

Опыт 6.1. Бромирование ненасыщенных соединений

Схема реакции:

Наблюдения:	_
Выводы:	
Опыт 6.2. Окисление олеиновой кислоты раствором перманганата кали Схема реакции:	IRI
Наблюдения:	
Выводы:	

Реакционная способность углеводородов	35 *****
Опыт 7.1. Бромирование анилина	
Схема реакции:	
Наблюдения:	
Выводы:	
Опыт 7.3. Окисление боковых цепей гомологов бензола	
Схема реакции:	
Наблюдения:	
Выводы:	
Dilloubi.	

САМОСТОЯТЕЛЬНАЯ ВНЕАУДИТОРНАЯ РАБОТА

Подготовка к рубежному контролю № 1.

Рубежный контроль № 1 «Основы строения и реакционной способности органических соединений»

БИЛЕТ РУБЕЖНОГО КОНТРОЛЯ (примерный вариант)

1. Назовите соединения по заместительной номенклатуре:

- 2. Напишите структурные формулы соединений: пропеналь, *п*-аминобензолсульфоновая кислота, оксобутандиовая кислота, диэтиламин.
- 3. Какой тип сопряжения осуществляется в приведенных ниже соединениях? Укажите типы гибридизации атомов углерода в этих соединениях.

Графически изобразите образование делокализованной связи в соответствующих сопряженных фрагментах.

$$\mathsf{CH_3CH} = \mathsf{CH} - \mathsf{CH} = \mathsf{CH}_2 \qquad \qquad \mathsf{CH_2} = \mathsf{CH} - \mathsf{O} - \mathsf{CH} = \mathsf{CH}_2 \qquad \qquad \mathsf{CH_2OH}$$

- 4. Какое из названных соединений толуол или гексатриен-1,3,5 является ароматическим? Обоснуйте свой выбор, используя критерии ароматичности.
- 5. Одинаковое ли влияние (электронодонорное или электроноакцепторное) оказывает гидроксильная группа в молекулах этанола, фенола и бензилового спирта? Укажите вид и знак электронных эффектов гидроксильной группы в этих соединениях и обозначьте эффекты графически.
- 6. Какой гидропероксид может образоваться при свободнорадикальном окислении 2-метилпропана? Напишите схему реакции и объясните, чем обусловлено такое направление реакции радикального замещения.
- 7. Приведите схему и опишите по стадиям механизм реакции гидратации бутена-1 с учетом статического и динамического факторов.
- 8. Укажите ориентирующее влияние карбоксильной группы в молекуле бензойной кислоты в реакциях электрофильного замещения. Напишите схему реакции бромирования бензойной кислоты.
- 9. С помощью каких качественных реакций можно обнаружить двойную связь в молекуле бутена-2? Приведите схемы реакций.
- 10. Какое соединение образуется при окислении этилбензола перманганатом калия в кислой среде? Приведите схему реакции.

ТИПОВЫЕ ТЕСТОВЫЕ ЗАДАНИЯ

1. Установите правильную последовательность.

Падение старшинства функциональных групп в названиях по заместительной номенклатуре

альдегидная группа
аминогруппа
гидроксильная группа
карбоксильная группа
меркаптогруппа

Ответ: _____

2. Обведите кружком номер правильного ответа.

В соединении все заместители проявляют электронодонорные свойства

1) COOH 2) COOH 3) CH=O
$$C_2H_5O$$
 C_2H_5 C_2

3. Обведите кружком номера правильных ответов.

Гомолитический разрыв связи C-H в пентене-2 приводит к образованию аллильных радикалов

- 1) у атома С-1
- 2) у атома С-2
- 3) у атома С-3
- 4) у атома С-4

- 5) у атома С-5
- 4. Установите соответствие:

Реагенты и условия реакции

Продукт реакции

Д)
$$CH_2CH=CHCH_3$$

Ответ: 1 ______, 2 _____

САМОСТОЯТЕЛЬНАЯ ВНЕАУДИТОРНАЯ РАБОТА

Задания по теме 4.

Руководство к лабораторным занятиям: тема 4, с. 58-72; тема 8, с. 111-129.

Вариант 1:	4.1.1,	8.1.7,	8.2.3,	4T.10.
Вариант 2:	4.1.2,	8.1.5,	8.2.5,	4T.05.
Вариант 3:	4.1.3,	4.2.1,	8.3.1,	4T.11.
Вариант 4:	4.1.4,	4.2.2,	8.3.3,	8T.12.
Вариант 5:	4.1.5,	4.2.6,	8.3.5,	8T.13.
Вариант 6:	4.1.6,	4.2.9,	8.3.7,	4T.09.
Вариант 7:	4.1.8,	8.1.6,	8.4.1,	8T.01.
Вариант 8:	4.1.1,	8.1.8,	8.4.4,	8T.05.
Вариант 9:	8.1.1,	8.2.1,	8.4.5,	8T.09.
Вариант 10:	8.1.3,	8.2.2,	8.4.2,	8T.07.
Вариант 11:	4.1.1,	8.1.4,	8.3.6,	8T.10.
Вапиант 12:	8 1 2	8 3 2	8 3 4	8T 03