В.П. Седов

КЛИНИЧЕСКАЯ ЭХОКАРДИОГРАФИЯ

ПРАКТИЧЕСКОЕ РУКОВОДСТВО

Министерство науки и высшего образования РФ

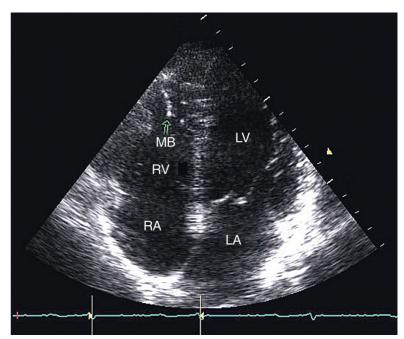
Рекомендовано Координационным советом по области образования «Здравоохранение и медицинские науки» в качестве учебного пособия для использования в образовательных учреждениях, реализующих основные профессиональные образовательные программы высшего образования уровня ординатуры по направлениям подготовки 31.08.36 «Кардиология» и 31.08.12 «Функциональная диагностика»

Регистрационный номер рецензии 1138 от 15 октября 2020 г.

ОГЛАВЛЕНИЕ

От автора	5
Список сокращений и условных обозначений	6
Введение	
Глава 1. Анатомические варианты нормального сердца	8
Глава 2. Наиболее часто употребляемые морфометрические и функциональные параметры сердца	10
Глава З. Клапанные пороки сердца	14
3.1. Клиническое применение эхокардиографии в кардиологической пропедевтике	14
3.2. Митральный стеноз	14
3.3. Митральная регургитация	2
3.4. Аортальный стеноз	29
3.5. Аортальная регургитация	37
3.6. Трикуспидальная регургитация	4
3.7. Стеноз трехстворчатого клапана	44
3.8. Стеноз легочной артерии	45
3.9. Легочная регургитация	46
Глава 4. Легочная гипертензия	48
Глава 5. Эхокардиография при остром коронарном синдроме, инфаркте миокарда и осложнениях инфаркта миокарда .	54
Глава 6. Жизнеспособность миокарда. Оглушенный и гибернирующий миокард	68
Глава 7. Стресс-эхокардиография	69

4 • ОГЛАВЛЕНИЕ


Глава 8. Эхокардиография при кардиомиопатиях	
8.1. Гипертрофическая кардиомиопатия	88
8.2. Дилатационная кардиомиопатия	94
8.3. Рестриктивная кардиомиопатия	
8.4. Аритмогенная дисплазия правого желудочка	10
8.5. Неклассифицируемые кардиомиопатии	102
Глава 9. Внутрисердечные массы — патологические эхопозитивные образования	104
9.1. Новообразования сердца	
9.2. Внутрисердечные тромбы	116
9.3. Инфекционный эндокардит	
Глава 10. Болезни перикарда	123
Глава 11. Эхокардиография при неотложных состояниях	132
Заключение	13 <i>ϵ</i>
Список литературы	

Глава 1

Анатомические варианты нормального сердца

Существует ряд внутрисердечных анатомических структур, а также врожденных особенностей строения сердца, которые не являются какой-либо патологией. Тем не менее иногда они могут быть причиной неправильной трактовки при ультразвуковом исследовании. Желудочки. Мышечные трабекулы в сердце. Правый желудочек (ПЖ) имеет более выраженный трабекулярный слой, чем левый, и соответственно трабекулярность правого предсердия (ПП) больше, чем левого. Наиболее яркой структурой в полости правого желудочка является модераторный пучок, который представляет собой мышечный тяж, соединяющий межжелудочковую перегородку (МЖП) и боковую стенку ПЖ (рис. 1.1). Выраженную трабекулярность ПЖ следует отличать от новообразований, вегетаций, тромбов или других внутриполостных образований.

В левом желудочке (ЛЖ) трабекулярный слой не выражен. В полость выступают папиллярные мышцы, к которым прикреплены хордальные нити, идущие к створкам митрального клапана. Наряду с истинными хордами, в левом желудочке нередкой находкой являются «ложные хорды» или «аномально расположенные хорды» или «эктопированные хорды», которые представляют соединительнотканные образования, соединяющие стенки в области верхушки или в области выходного тракта. Эти структуры лучше визуализируются у больных с кардиомиопатией (КМП) и дилатированным сердцем. В последние годы аномально расположенные хорды причисляют к проявлениям малых аномалий соединительной ткани, к которым также относятся пролабирование атриовентрикулярных

Рис. 1.1. Модераторный пучок в правом желудочке. Верхушечная четырехкамерная позиция. МВ — модераторный пучок; LV — левый желудочек; RV — правый желудочек; LA — левое предсердие; RA — правое предсердие

клапанов, дискинезия трахеобронхиального дерева, плоскостопие, миопия. Довольно часто у одного и того же пациента можно найти сочетание этих проявлений аномалий соединительной ткани. Для кардиолога важным является клиническое значение аномально расположенных хорд. В большинстве случаев никакого клинического значения данные структуры сердца не имеют. Тем не менее в ряде случаев они, во-первых, являются причиной систолических шумов в сердце, не связанных с врожденными или приобретенными пороками сердца. Во-вторых, при развитии дилатации сердца аномально расположенные хорды могут служить в качестве структур, препятствующих быстрой дилатации ЛЖ, например, при обширном ИМ. Предсердия. В правом предсердии часто визуализируются евстахиев клапан и сеть Хиари. Евстахиев клапан представляет собой остаток эмбриональной мембраны, которая отделяет нижнюю полую вену от коронарного синуса и во внутриутробном периоде направляет оксигенированную кровь из нижней полой вены через овальное окно межпредсердной перегородки в левые камеры сердца и большой круг кровообращения. В дальнейшем эта мембрана претерпевает обратное развитие, но часть ее остается в виде евстахиева клапана, который можно увидеть в месте перехода нижней полой вены в правое предсердие (видео 1.1 🚅). Сеть Хиари является линейной структурой — остаточная ткань в правом предсердии, являющаяся продолжением евстахиева клапана. Часто это несколько нитевидных подвижных образований, которые могут быть приняты за какие-либо патологические структуры тромб, новообразование или вегетации. Стенка правого предсердия часто выглядит неровной из-за выступающих трабекул или гребешковых мышц. Левое предсердие имеет более гладкую стенку, чем правое. При дифференциации правых и левых камер сердца надо учитывать, что правые отделы имеют более выраженный трабекулярный слой. Нечасто из апикального доступа видно ушко левого предсердия, особенно у больных с дилатацией последнего. Тем не менее для визуализации ушка необходимо прибегать к чреспищеводной эхокардиографии, что является одним из показаний проведения этого исследования.

Межпредсердная перегородка. В норме, как правило, визуализируется первичная, более толстая часть межпредсердной перегородки, вблизи атриовентрикулярных клапанов. Из апикальной четырехкамерной позиции в средней части межпредсердной перегородки можно видеть истончение перегородки, а у части больных она не видна. Это место овальной ямки или отверстия, которое в 15% случаев не закрывается в течение одного месяца после рождения, представляет собой вторичную перегородку. У большинства пациентов через это отверстие шунтирования крови не отмечается благодаря имеющемуся здесь клапану (заслонке) овального отверстия, который закрывает его во время систолы предсердий. При большом овальном отверстии и несостоятельности заслонки возникает шунтирование крови слева направо. В этом случае говорят о вторичном дефекте межпредсердной перегородки. В ряде случаев вторичная перегородка представляет собой гипермобильную структуру, которая прогибается в правое или левое предсердие в зависимости от фазы сердечного цикла и разности давления в предсердиях. При выраженном прогибании говорят об аневризме межпредсердной перегородки (видео 1.2 🚅). Таким образом, несмотря на особенности строения и функции предсердий и межпредсердной перегородки для клинициста важно ответить на следующие вопросы: 1) является ли выявленная структура вариантом нормы или патологическим образованием; 2) существует ли шунтирование крови на уровне предсердий, а если да, то какова его гемодинамическая значимость?