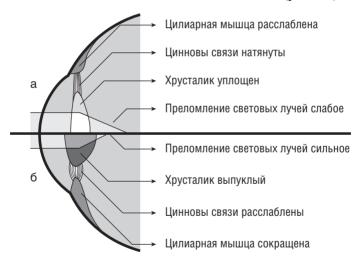
Оглавление

Авторы4
Предисловие
Список сокращений 6
Введение
Глава 1. Оптическая система глаза
Глава 2. Рефракция глаза, ее виды и аномалии 11
Глава 3. Представление об астигматизме
Глава 4. Строение роговицы
Глава 5. Строение хрусталика
Глава 6. Этиология астигматизма
Глава 7. Эпидемиология астигматизма 49
Глава 8. Классификация астигматизма
Глава 9. Клиническая картина при астигматизме 64
Глава 10. Диагностика астигматизма 69
Глава 11. Лечение и коррекция астигматизма 111
Глава 12. Осложнения астигматизма 179
Глава 13. Реабилитация при астигматизме
Глава 14. Диспансерное наблюдение
при астигматизме
Глава 15. Прогноз и профилактика астигматизма 185
Список литературы

Предисловие

Книга посвящена такой распространенной проблеме в офтальмологии, как астигматизм. В данной работе освещаются ключевые моменты, касающиеся астигматизма, начиная с базового понимания оптической системы глаза и заканчивая детальным анализом этого распространенного нарушения зрения. Подробно рассматриваются анатомические особенности структур, вовлеченных в развитие астигматизма, а также причины его возникновения, распространенность, различные методы диагностики. Особое внимание уделено способам коррекции астигматизма, как консервативным, так и хирургическим. Кроме того, изучаются потенциальные осложнения, возникающие на фоне этой патологии, подходы к реабилитации пациентов, нуждающихся в восстановлении зрительных функций, принципы диспансерного наблюдения для контроля за состоянием зрения, а также прогноз течения заболевания и меры его профилактики.

Вопросы астигматизма, включая его причины и способы коррекции, широко освещены в работах как российских, так и иностранных авторов. Зачастую врачи-офтальмологи сталкиваются с трудностями при поиске информации, учитывая все многообразие научных публикаций. Это приводит к сложному выбору оптимального метода коррекции астигматизма. Книга представляется актуальной, поскольку последняя российская монография об астигматизме была выпущена в 1969 г. (Радзиховский Б.Л. Астигматизм человеческого глаза. М.: Медицина. 196 с.). Все вышеизложенное послужило причиной создания этого издания, которое основано на современных научных данных.


Введение

Астигматизм — распространенное зрительное расстройство, встречающееся повсеместно и относящееся к группе рефракционных аномалий глаза. Приблизительно 1/6 всех случаев проблем со зрением, связанных с рефракцией, обусловлены именно этой патологией. Астигматизм, начиная с 0.5 дптр и более. диагностируется примерно у 1/3 детского населения и около 2/3 взрослого населения старше 18 лет. Он приводит к дискомфорту, связанному со снижением зрения, ощущению усталости, возникающему при зрительных нагрузках, раздвоению видимых объектов и болям в области глаза и головы. Часто наблюдается сочетание астигматизма с другими разновидностями нарушения рефракции (миопия и гиперметропия), и это может оказывать влияние на их прогрессирование. Причины возникновения астигматизма включают в себя наследпредрасположенность, механическое ственную воздействие век на роговицу, дисфункцию мышц, перенапряжение глаза и др. Далее будет представлен более подробный анализ различных аспектов этой патологии.

ГЛАВА 5

СТРОЕНИЕ ХРУСТАЛИКА

Хрусталик — это важная составляющая оптической системы глаза. Он представляет собой прозрачную, двояковыпуклую структуру, заключенную в капсулу. Роль хрусталика заключается в изменении своей формы для обеспечения оптической аккомодации глаза (рис. 5.1).

Рис. 5.1. Состояние аккомодационного аппарата глаза: а — в покое при взгляде вдаль; 6 — в напряжении при взгляде вблизь

Совместно с цилиарным телом хрусталик позволяет фокусировать изображения на различных расстояниях.

Особенность хрусталика заключается в его эластичности. Благодаря этому он способен плавно изменять свою оптическую силу, что позволяет человеку видеть четко как близкие, так и отдаленные объекты. Это саморегулирующийся механизм, который обеспечивает динамичность рефракции глаза. Однако с возрастом аккомодативная способность хрусталика снижается. Это явление называется пресбиопией.

Передняя и задняя сферичные поверхности хрусталика имеют разный радиус кривизны.

Передняя поверхность хрусталика характеризуется более плоским профилем и большим радиусом кривизны, в то время как задняя поверхность имеет меньший радиус кривизны. Когда аккомодация достигает своего пика, кривизна передней и задней поверхностей хрусталика практически уравнивается. Передняя точка в центре передней поверхности называется передним полюсом, а задняя точка в центре задней поверхности — задним полюсом. Воображаемая линия, соединяющая эти полюса, представляет собой ось хрусталика. Экватором хрусталика называют линию, где передняя поверхность переходит в заднюю (рис. 5.2) [2].

Прозрачная и лишенная структуры капсула, которая покрывает хрусталик, разделена на две части: переднюю и заднюю. Однослойный эпителиальный слой, покрывающий переднюю часть капсулы, играет важную роль в метаболизме хрусталика. Этот эпителий отличается высокой активностью ферментов окисления, особенно в сравнении с центральной частью линзы. Клетки эпителия в передней капсуле способны к активному делению, которое особенно интенсивно протекает в экваториальной зоне хрусталика. В этой области клетки претерпевают вытягивание, образуя зону, отвечающую

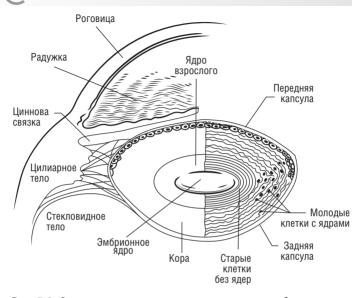


Рис. 5.2. О структуре хрусталика: его толщина колеблется в пределах 3,5–5 мм, варьируя в зависимости от степени напряжения аккомодации. Передняя поверхность имеет радиус кривизны около 10 мм, а задняя — около 6 мм. Толщина передней капсулы составляет от 11 до 18 мкм. Диаметр хрусталика — от 9 до 10 мм. Преломляющая способность хрусталика в расслабленном состоянии в среднем равна 20 дптр, а при максимальном напряжении аккомодации может составлять от 30 до 35 дптр. Толщина цинновых связок составляет около 21 мкм

за рост хрусталика. По мере роста и развития эти вытянутые клетки преобразуются в хрусталиковые волокна, обеспечивающие прозрачность и эластичность органа [2].

Новые, лентовидные клетки постоянно генерируются на периферии хрусталика, заменяя старые. На протяжении всей жизни происходит постоянное обновление

этих клеток. Состарившись, волокна, смещаясь вглубь, лишаются клеточных ядер, теряют водный баланс и уменьшаются в объеме. В результате плотного прилегания волокон друг к другу из них формируется ядро хрусталика, которое с годами становится больше и плотнее. Несмотря на эти изменения, хрусталик сохраняет свою прозрачность. Однако возникают некоторые изменения в его функции. Уменьшается общая эластичность хрусталика, что приводит к снижению его способности к аккомодации — способности фокусировать изображение на разных расстояниях. Молодые волокна, непрерывно формирующиеся на периферии, создают вокруг ядра эластичную субстанцию, известную как кора хрусталика. Кора хрусталика помогает поддерживать его форму и гибкость [2].

Линза глаза, подобно луковице, состоит из нескольких слоев. Все волокна внутри нее, берущие начало в зоне роста, расположенной вокруг экватора, сходятся в центре, образуя структуру, визуально напоминающую трехлучевую звезду. Данная особенность строения хрусталика хорошо просматривается при биомикроскопическом исследовании, в частности при появлении помутнений. Важно отметить, что в хрусталике отсутствуют нервные окончания, кровеносные и лимфатические сосуды.

Внутриглазная жидкость окружает хрусталик со всех сторон. Питание хрусталика осуществляется через его капсулу путем диффузии и активного переноса необходимых веществ. В отличие от многих других тканей, хрусталик содержит относительно небольшое количество воды (около 60-65%), и в течение времени этот показатель снижается. С возрастом у многих людей хрусталик глаза может слегка пожелтеть, и эта желтизна

со временем может стать более выраженной. Хотя это обычно не сказывается на четкости зрения, восприятие цветов может измениться, в особенности это касается синей и фиолетовой частей спектра [2].

Расположенная в глазу, эта линза занимает фронтальное положение между радужной оболочкой и стекловидным телом, таким образом разделяя глазное яблоко на переднюю и заднюю секции. Хрусталик выполняет функцию защиты передних структур глаза, оберегая их от давления, оказываемого стекловидным телом. Передняя часть хрусталика служит опорой для зрачковой зоны радужки. Задняя поверхность хрусталика помещена в углубление стекловидного тела и отделена от него тонким капиллярным пространством. Эта щель может увеличиваться при накоплении экссудата. Удержание хрусталика в правильном положении обеспечивается цинновыми связками, которые воздействуют на капсулу хрусталика при сокращении и расслаблении мышц цилиарного тела. Эти связки также предотвращают проникновение микроорганизмов из передней камеры глаза в стекловидное тело [2].

К важнейшим функциям хрусталика относятся светопроведение, обеспечивающее беспрепятственное прохождение света к сетчатке, и светопреломление.