ОГЛАВЛЕНИЕ

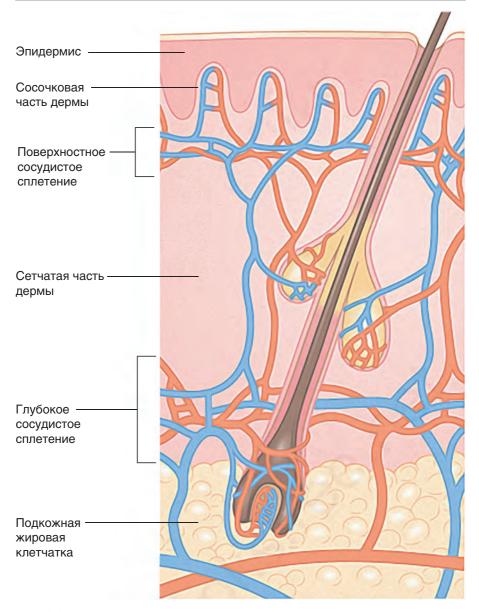
Список сокращении и условных обозначении
Глава 1. Кровеносная и лимфатическая системы кожи 6 Кровеносная система кожи 6 Гистологическое строение кровеносных сосудов кожи 10 Ультраструктура кровеносных сосудов кожи 11 Лимфатическая система кожи 13 Ультраструктура лимфатических сосудов кожи 14 Нарушение функции лимфатической системы 16 Список литературы 17
Глава 2. Васкулиты кожи
Определение
Эпидемиология
Этиология и патогенез 20
Классификация
Диагностика
Патоморфологические изменения
Общие вопросы терапии
Прогноз
Список литературы
Глава 3. Пигментно-пурпурозные дерматозы
Определение
Эпидемиология124
Этиология и патогенез
Клиническая картина
Диагностика
Лечение
Системная терапия144
Фототерапия
Заключение
Список литературы
Глава 4. Окклюзионные васкулопатии
Введение. Общие вопросы
Окклюзионные васкулопатии, вызванные эмболией 161
Тромбоцитарная окклюзия
Окклюзионные васкулопатии, связанные с системными
или сосудистыми коагулопатиями

4 • ОГЛАВЛЕНИЕ

Окклюзионные васкулопатии в результате повышения	
вязкости крови при действии низких температур	6
Сосудистая окклюзия микроорганизмами	7
Другие варианты окклюзионных васкулопатий	9
Алгоритм диагностики кожной окклюзионной васкулопатии	
на клиническом примере18	1
Список литературы	6
Глава 5. Сосудистые опухоли и опухолеподобные процессы кожи 18	
Классификация сосудистых опухолей и опухолеподобных	
процессов кожи	8
Реактивные сосудистые процессы кожи	
Телеангиэктазии	13
Пограничные и low-grade злокачественные сосудистые опухоли 21	6
Список литературы	2
Предметный указатель	4

Глава 1

Кровеносная и лимфатическая системы кожи


КРОВЕНОСНАЯ СИСТЕМА КОЖИ

Кожный покров человека имеет обильное кровоснабжение. Кровеносные сосуды необходимы для обеспечения кожи достаточным количеством кислорода и питательных веществ, поддержания гомеостаза и функции тканей, а также для удовлетворения повышенных потребностей в питании при различных патологических состояниях.

Кожа состоит из трех отделов: 1) эпидермис; 2) дерма; 3) гиподерма, или подкожная жировая клетчатка. В свою очередь, дерма состоит из межклеточного вещества, представленного волокнисто-соединительной тканью и аморфным веществом, и клеточных элементов. Кровеносные сосуды располагаются в основном в дермальной части кожи. Кроме этого, здесь находятся аднексальные структуры (волосяные фолликулы, сальные и потовые железы), лимфатические сосуды, мышцы и нервы.

Непосредственными источниками васкуляризации кожи являются три группы артерий: кожные ветви артерий, проходящие в межмышечных фасциальных перегородках; мышечно-кожные и надкостно-кожные артерии.

Кровеносная система кожи разделена на глубокое и поверхностное сосудистые сплетения (рис. 1.1). Глубокое

Рис. 1.1. Схематичное изображение поверхностного и глубокого сосудистого сплетения кожи

сосудистое сплетение лежит на границе между дермой и гиподермой. Оно осуществляет питание потовых желез и поверхностного слоя гиподермы. Поверхностное сосудистое сплетение образуется в поверхностных частях ретикулярной дермы и, в свою очередь, снабжает сосочковую дерму с помощью системы капиллярных петель, имеющей канделяброподобное строение. Каждая капиллярная петля состоит из восходящей артериальной и нисходящей венозной ветвей. Сосуды дермальных сосочков представлены терминальными артериолами, артериальными и венозными капиллярами и посткапиллярными венулами с преобладанием последних (рис. 1.2). Внутри глубокого сосудистого сплетения проходят мелкие мышечные артерии, которые дают начало артериолам, кровоснабжающим поверхностное сосудистое сплетение. Вены кожи представлены четырьмя сплетениями: первое образуют венулы непосредственно под сосочками (поверхностная венозная сеть); второе располагается в центральной части дермы (субкапиллярная венулярная сеть); третье — в ретикулярной дерме (глубокая дермальная венозная сеть); четвертое — на границе дермы и подкожной жировой клетчатки (гиподермальные венозные сплетения). Из четвертого сплетения вены проходят через всю гиподерму и соединяются в более крупные.

Бо́льшая часть кровотока поступает к наиболее метаболически активным компонентам кожи, а именно — к эпидермису, волосяным фолликулам и аднексальным структурам. В то время как дермальные сосочки богато васкуляризированы, капилляры не проникают в эпидермис, он получает питание путем диффузии.

Васкуляризация кожи характеризуется топографическими особенностями. На коже разгибательной поверхности суставов, ладоней и подошв имеются выраженные эпидермальные ретикулярные гребешки, также здесь прямые капиллярные петли переходят в удлиненные дермальные сосочки. На коже живота формирование ретикулярного гребешка и папиллярной сети менее выражено. Форма папиллярных микрососудов точно отражает трехмерную структуру гребешков, обычно с одной или двумя петлями внутри каждого дермального сосочка. Внутренний диаметр папиллярных сосудов составляет в среднем от 5 до 10 мкм. В отличие от идеализированной архитектурной модели сосудистой системы кожи, исследования сосудистой перфузии и исследования с помощью световой флюоресцентной микроскопии выявили довольно непрерывную, иногда нерегулярную сеть взаимосвязанных кровеносных сосудов кожи.

Иммуногистохимические и перфузионные исследования позволяют предположить, что часто единственный кровеносный сосуд в мезенхимальном сосочке волосяного фолликула происходит из глубокого сосуди-

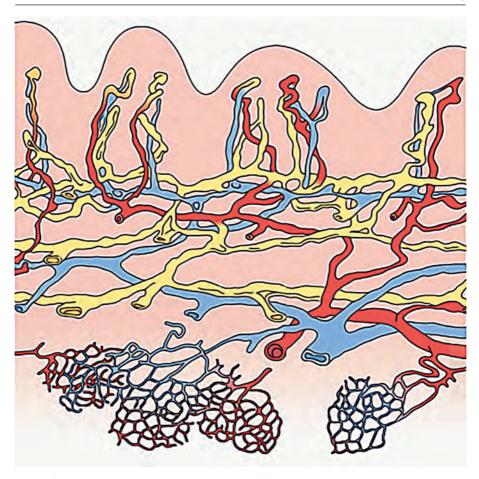


Рис. 1.2. Взаимное расположение артериол (красные), вен (синие) и лимфатических сосудов (желтые) сосудистых сплетений кожи. Сосочки дермы кровоснабжаются с помощью системы капиллярных петель, имеющих канделяброподобное строение. Каждая капиллярная петля состоит из восходящей артериальной и нисхолящей венозной ветви

стого сплетения, тогда как густая сосудистая сеть, окружающая волосяной фолликул, — преимущественно из поверхностного. Относительно мелкие сосуды, обнаруживаемые в фазе телогена (фаза покоя), удлиняются и увеличиваются в фазе анагена (фаза роста), а затем распространяются к гиподерме вместе с растущим волосяным фолликулом. Во время фазы катагена инволюция волосяных фолликулов обусловлена регрессией перифолликулярных кровеносных сосудов и повышенной скоростью

апоптоза эндотелиальных клеток (ЭК). Степень перифолликулярной васкуляризации может напрямую влиять на размер волосяных фолликулов. Так, анагеновые волосяные фолликулы имеют обильную васкуляризацию. Сосудистая сеть кожи играет роль в регуляции температуры тела и артериального давления. Артериолы имеют прекапиллярные мышечные сфинктеры, которые при сокращении направляют кровь через артериовенозные анастомозы непосредственно в венулы, минуя капиллярные сети. Артериовенозные анастомозы встречаются на кончиках пальцев, в ногтевом ложе, на коже выступающих отделов лица (нос, губы, ушные раковины), где они образуют особые структуры — гломусы (клубочки), или клубочковые тельца. Они имеют автономную иннервацию и контролируют периферический кровоток посредством модуляции уровня мышечного сокращения.

ГИСТОЛОГИЧЕСКОЕ СТРОЕНИЕ КРОВЕНОСНЫХ СОСУДОВ КОЖИ

Гистологическое строение кровеносных сосудов сходно, за исключением капилляров и некоторых вен. В строении сосудистой стенки выделяют три оболочки:

- 1) внутреннюю (tunica intima);
- 2) среднюю (tunica media);
- 3) наружную (adventitia).

Интима (внутренняя оболочка) представляет собой непрерывный внутренний тонкий монослой плоских $\Im K$, окруженных с внешней стороны сплошной базальной мембраной. Медия является средней оболочкой и состоит из двух слоев гладкомышечных клеток. Адвентиция, окружающая медию, состоит из рыхлой соединительной ткани, образует наружную эластическую пластинку и в мелких мышечных артериях (но не в артериолах) часто содержит эластические волокна. Мелкие артериолы имеют эндотелий, окруженный одним слоем гладкомышечных клеток. Капилляры состоят из одного слоя ЭК, но при этом могут иметь второй, иногда прерывистый слой периваскулярных клеток, называемых перииитами, которые окружены базальной мембраной, являющейся продолжением эндотелиальной базальной мембраны. ЭК и перициты образуют плотные межклеточные контакты. Посткапиллярные венулы крупнее капилляров, но имеют ту же основную структуру. Стенка посткапиллярных венул лишена гладкомышечных клеток. Небольшие мышечные венулы, в которые впадают посткапиллярные венулы, имеют интиму, состоящую из уплощенных ЭК, окруженных слоем гладкомышечных клеток толщиной в одну или две клетки. Поэтому мышечные венулы похожи на маленькие артериолы, но с гораздо более широким просветом. Вены состоят из эндотелия, окруженного мышечной оболочкой толщиной в несколько слоев. Как правило, внутренняя эластическая пластинка представлена слабо. Обычно имеется толстая соединительнотканная адвентиция, а эластические волокна отсутствуют. Эластическая ткань присутствует только в очень крупных мышечных венах.

Также в дерме находятся *вуалевые клетки*, которые окружают все микрососуды и отделяют их от прилежащей соединительной ткани. Вуалевые клетки представляют собой длинные тонкие клетки с истонченной цитоплазмой и без базальной мембраны. Они больше напоминают фибробласты, чем перициты.

УЛЬТРАСТРУКТУРА КРОВЕНОСНЫХ СОСУДОВ КОЖИ

Перициты играют важную роль в поддержании зрелых кровеносных сосудов, а их отсоединение от ЭК происходит на ранних этапах ангиогенеза (рост новых капилляров из ранее существовавших кровеносных сосудов). Артериолы и венулы так же, как и капилляры, окружены перицитами. Эти клетки можно визуализировать путем окрашивания на β-рецептор тромбоцитарного фактора роста (PDGFR-β), хондроитинсульфат протеогликан-4 (CSPG4/NG2 или нейрон-глиальный антиген 2), α-актин гладких мышц и десмин. Стенки большинства артериол и более крупных венул и вен содержат сократительные гладкомышечные клетки, окруженные базальной мембраной. Базальные мембраны сосудов содержат коллаген IV, XV и XVIII типов, ламинин, фибронектин и другие белки внеклеточного матрикса. На ультраструктурном уровне сосудистые ЭК характеризуются наличием плотных контактов между соседними клетками и специализированными органеллами — палочковидных *телец Вейбеля—Паладе*, которые являются основным источником фактора свертывания крови фон Виллебранда, также известного как антиген, связанный с фактором VIII. Помимо фактора свертывания крови фон Виллебранда, тельца Вейбеля-Паладе содержат Р-селектин, ангиопоэтин-2 и эндотелин-1. Активация ЭК провоспалительными цитокинами или проангиогенными факторами легко приводит к перемещению этих органелл к клеточной мембране с последующим усилением мембранной экспрессии Р-селектина и высвобождением фактора свертывания крови фон Виллебранда.

Другие характерные ультраструктурные особенности эндотелиоцитов включают *кавеолы* (мельчайшие инвагинации поверхности мембра-

ны), пиноцитозные везикулы и образование везикуловакуолярных органелл. Циркулирующие макромолекулы пересекают эндотелий через промежутки между ЭК и трансэндотелиальные клеточные поры, некоторые из них возникают из везикуловакуолярных органелл. Фенестрации ЭК — это участки с прямым прилеганием их мембран без промежуточной цитоплазмы, редко наблюдаются в нормальной коже, за исключением ангиогенных перифолликулярных кровеносных сосудов во время фазы роста волосяного фолликула. Однако фенестрированные ЭК часто наблюдаются при заболеваниях кожи с выраженным ангиогенезом и гиперпроницаемостью сосудов, включая псориаз. Для иммуногистохимического окрашивания ЭК кровеносных сосудов используются несколько маркеров (табл. 1.1).

Таблица 1.1. Иммуногистохимические маркеры, используемые для детекции кровеносных и лимфатических сосудов

Маркер	Кровеносные сосуды	Лимфатические сосуды
CD31 (PECAM-1)	++	+
CD34	++	-
Фактор фон Виллебранда	+	-
PV-1 (PAL-E антитело)	+	-
VEGFR-3	-	+
Подопланин/D2-40	-	++
LIVE-1	_	++
Prox1	-	++

Примечание. CD (cluster of differentiation) — маркер дифференцировки, PV-1 (Plasmalemma vesicle protein 1) — белок-1, ассоциированный с пузырьками плазмолеммы, PAL-E (Pathologische Anatomie Leiden-Endothelium) — гликопротеин, ассоциированный с кавеолой, VEGFR-3 — рецептор фактора роста эндотелия сосудов-3, PECAM-1 — тромбоцитарно-эндотелиальная молекула адгезии-1. Prox1 (Prospero homeobox protein 1) — гомеобокс 1, связанный с Prospero (Prox1)

В нормальной коже человека наиболее специфичными маркерами кровеносных сосудов являются фактор свертывания крови фон Виллебранда, CD34 (сиаломуцин или рецептор α-селектина; молекула адгезии) и PV-1; последний распознается антителом PAL-E. Двойное иммунофлюоресцентное окрашивание маркера панэндотелиальных клеток CD31 (PECAM-1) плюс специфичный для эндотелия лимфатических сосудов гиалуроновый рецептор LYVE-1 или гликопротеин подопланин (распознается широко используемым антителом D2-40) также позволяют селективно визуализировать LYVE-1-отрицательные (или подопла-

нин-отрицательные) и CD31-положительные кровеносные сосуды кожи. В результате кровеносные сосуды можно отличить от лимфатических (рис. 1.3).

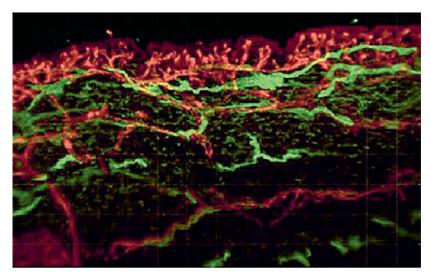


Рис. 1.3. Методом флюоресцентной микроскопии визуализируются кровеносные сосуды, экспрессирующие фактор фон Виллебранда (красные), и лимфатические сосуды, экспрессирующие гликопротеин подопланин (зеленые)

ЛИМФАТИЧЕСКАЯ СИСТЕМА КОЖИ

Лимфатическая система является составной частью сосудистой системы человека, которая по строению и функции дополняет венозное русло. Лимфатическая система включает в себя пути транспортировки лимфы (лимфатические капилляры, сосуды, стволы и протоки) и лимфатические узлы (вторичные лимфоидные органы). Лимфатическая система развивается параллельно с кровеносной посредством процесса, называемого лимфангиогенезом. Лимфатические капилляры играют важную роль в поддержании нормального тканевого давления путем отвода богатой белком лимфы из внеклеточного пространства. Еще одна важная функция состоит в переносе иммунных клеток из кожи в регионарные лимфатические узлы. Лимфатическая система также участвует в метастатическом распространении кожных злокачественных новообразований.

Лимфатические сосуды кожи образуют два горизонтальных сплетения: поверхностное и глубокое. Поверхностное сплетение собирает лимфу

из лимфатических капилляров и находится в непосредственной близости от поверхностного кожного артериального сплетения. Вертикальные лимфатические сосуды соединяют поверхностное сплетение с более крупными собирательными сосудами в ретикулярной дерме и верхнем слое гиподермы. Глубокое сплетение формируется за счет анастомозирующих между собой лимфатических сосудов в подкожной жировой клетчатке. Здесь сосуды содержат клапаны, обеспечивающие однонаправленный транспорт жидкости.

Лимфатические капилляры — начальное звено лимфатической системы. Они слепо начинаются в сосочковом слое дермы. Стенка лимфатических капилляров состоит из непрерывного слоя ЭК, лишена сплошной базальной мембраны и перицитов. Эндотелиоциты лимфатических капилляров крупнее эндотелиоцитов кровеносных капилляров. При скоплении жидкости вокруг капилляра ЭК могут смещаться (этому способствуют актиноподобные микрофиламенты), щели между клетками увеличиваются, и межклеточная жидкость проходит в просвет капилляра.

Через посткапилляры (отличаются от лимфатических капилляров наличием клапанов) лимфатические капилляры постепенно переходят в лимфатические сосуды малого, среднего и крупного калибров. Стенки лимфатических сосудов по строению аналогичны венам (имеют гладкомышечный и адвентициальный слои, а также многочисленные клапаны), что объясняется сходными условиями лимфо- и гемодинамики.

По ходу лимфатических сосудов располагаются лимфатические узлы. После прохождения лимфы через лимфатические узлы лимфатический сосуд называется лимфатическим стволом (то есть лимфатические стволы — это сосуды, на пути которых нет лимфатических узлов). Лимфатические капилляры отсутствуют в таких структурах, как эпидермис, волосы, ногти и слизистые оболочки. Структура лимфатических сосудов кожи может значительно варьироваться в зависимости от строения кожи на конкретном участке тела. Определенные области: пальцы, ладони и подошвы, мошонка и крайняя плоть — имеют более обильную лимфатическую сеть.

УЛЬТРАСТРУКТУРА ЛИМФАТИЧЕСКИХ СОСУДОВ КОЖИ

До недавнего времени исследования лимфатической системы сдерживались из-за отсутствия специфических маркеров, надежно отличающих лимфатические ЭК от клеток кровеносных сосудов. Эндотелиальный маркер PECAM-1 (тромбоцитарно-эндотелиальная молекула адгезии-1,

CD31) экспрессируется как ЭК кровеносных сосудов, так и лимфатическими ЭК, хотя в целом уровни экспрессии в лимфатических сосудах ниже.

Перед обнаружением специфических маркеров для выявления лимфатических сосудов в коже использовали двойное окрашивание на СD31 и специфический маркер кровеносных сосудов PV-1 (белок-1, ассоциированный с пузырьками плазмолеммы, распознаваемый антителом РАС-Е) или CD34. В настоящее время идентифицированы несколько маркеров, которые экспрессируются преимущественно или исключительно лимфатическими ЭК кожи. VEGFR-3 (рецептор фактора роста эндотелия сосудов-3, Flt-4) экспрессируется на лимфатических сосудах в нормальной коже и служит рецептором для факторов лимфангиогенеза VEGF-C и VEGF-D29. Подопланин — трансмембранный гликопротеин, является специфическим маркером кожных лимфатических сосудов. Антитело D2-40 распознает подопланин, надежно и специфически окрашивает лимфатические сосуды в нормальной и пораженной коже человека. Следует отметить, что подопланин играет важную роль в разделении лимфатической и кровеносной систем, индуцируя агрегацию тромбоцитов через свой рецептор CLEC2 на тромбоцитах; это препятствует притоку крови в лимфатическую сосудистую систему.

Гиалуронановый рецептор эндотелия лимфатических сосудов (LYVE-1), гомолог CD44, был идентифицирован как специфический белок клеточной поверхности лимфатических ЭК. Хотя некоторые специализированные ЭК кровеносных сосудов, участвующие в метаболизме гиалуроновой кислоты (например, синусоидальные ЭК в печени), также экспрессируют LYVE-1, его экспрессия высокоспецифична для лимфатических сосудов в большинстве органов, включая кожу. В лимфатических капиллярах отмечается более сильная экспрессия LYVE-1, чем в более крупных собирательных лимфатических сосудах. Некоторые маркеры лимфатических сосудов, например VEGFR-3 и LYVE-1, также могут экспрессироваться отдельными субпопуляциями лейкоцитов, такими как макрофаги, в частности при воспалительных состояниях.

Во время эмбрионального развития гомеобоксный ген *Prox1* (Prospero homeobox protein 1) является самым ранним маркером лимфатических ЭК. Белок Prox1 экспрессируется в поверхностных лимфатических сосудах вместе с VEGFR. У взрослых его специфическая экспрессия поддерживается кожными лимфатическими ЭК. В настоящее время Prox1 является наиболее специфическим маркером дифференцировки лимфатических сосудов в коже вместе с подопланином.

За последние два десятилетия было обнаружено несколько молекул, которые регулируют рост и функцию лимфатических сосудов. В частно-

сти, были идентифицированы два новых члена семейства факторов ангиогенеза VEGF, которые отличаются своей способностью стимулировать лимфангиогенез, — VEGF-C и VEGF-D. Они активируют рецепторную тирозинкиназу VEGFR-3 (Flt-4) на лимфатических ЭК и после протеолитического расшепления — рецепторную тирозинкиназу VEGFR-2, которая экспрессируется на кровеносных сосудах и лимфатическом эндотелии. Трансгенные мыши с целенаправленной сверхэкспрессией либо VEGF-C, либо VEGF-D в коже характеризовались гиперплазией кожных лимфатических сосудов, тогда как крупных аномалий кровеносных сосудов обнаружено не было. Наоборот, блокада как VEGF-C, так и VEGF-D трансгенной гиперэкспрессией растворимого VEGFR-3 в коже приводит к отсутствию кожной лимфатической системы и к развитию лимфедемы (патологическое накопление богатой белком жидкости в интерстициальном пространстве). Также были идентифицированы дополнительные факторы лимфангиогенеза, включая VEGF-A, ангиопоэтин-1, bFGF, HGF и сфингозин-1-фосфат.

НАРУШЕНИЕ ФУНКЦИИ ЛИМФАТИЧЕСКОЙ СИСТЕМЫ

Нарушение функции лимфатической системы приводит к развитию ряда заболеваний, прежде всего к лимфедеме с сопутствующим нарушением иммунной функции, нарушению заживления ран и фиброзным изменениям. Гетерозиготные инактивирующие миссенс-мутации гена, кодирующего VEGFR-3, были обнаружены в семьях, пораженных первичной лимфедемой (болезнь Милроя), которая характеризуется хроническим отеком конечностей. При синдроме лимфедемы-дистихиаза функция лимфатических сосудов нарушается из-за мутаций, влияющих на функцию фактора транскрипции FOXC2, а мутации в гене фактора транскрипции SOX18 лежат в основе рецессивных и доминантных форм синдрома гипотрихоз—лимфедема—телеангиэктазии. Дополнительные генные мутации, связанные с лимфатическими аномалиями, включают ССВЕ1 или FAT4 (синдром Хеннекама), GJC2 (наследственная лимфедема), PTPN11 (синдром Нунан) и GATA2 (первичная лимфедема с миелодисплазией — синдром Эмбергера).

Важно отметить, что индуцированный опухолью лимфангиогенез способствует метастазированию в сторожевые лимфатические узлы и снижает общую выживаемость человека при меланомах и большом количестве карцином. Наконец, нарушение функции лимфатических сосудов было выявлено при хроническом воспалении, а активация функции лимфатических сосудов показала многообещающие результаты при лечении хронических воспалительных заболеваний, включая экспериментальное воспаление кожи и артрит.

Недавний прогресс в изучении молекулярных механизмов, которые контролируют развитие и функции кровеносных и лимфатических сосудов, привел к пониманию патогенеза сосудистых заболеваний кожи и к развитию новых терапевтических стратегий их лечения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bolognia J.L., Schaffer J.V., Cerroni L. Dermatology. Amsterdam: Elsevier, 2018. 2672 p.
- 2. Calonje C., Brenn T., Lazar A., Billings E. McKee's Pathology of the Skin. Amsterdam: Elsevier, 2020. 1980 p.
- 3. Reguena L., Kutzner H. Cutaneous Soft Tissue Tumors, 1st ed. Philadelphia: Wolter Kluwer Health, 2014. 984 p.