# ИШЕМИЧЕСКАЯ БОЛЕЗНЬ СЕРДЦА

# 1.1. ЭХОКАРДИОГРАФИЧЕСКАЯ ДИАГНОСТИКА ИШЕМИИ МИОКАРДА

# 1.1.1. Нарушение локальной сократимости миокарда — основа эхокардиографической диагностики ишемии

Нарушение сократимости зависимой зоны миокарда в условиях острой ишемии впервые описано в 1935 г. [27]. В настоящее время взаимосвязь сократительной функции миокарда и кровоснабжения хорошо изучена и объясняется следующим образом. Показано, что метаболизм миокарда является в норме исключительно аэробным. Это означает, что образование энергии в миокарде происходит в результате аэробного окисления, и поэтому по потреблению миокардом кислорода (MVO<sub>2</sub>) можно оценивать его общий метаболизм. На сокращение миокарда потребляется до 90% его энергии. В связи с этим в условиях дефицита доставки кислорода происходит немедленное снижение образования энергии в миокарде, что в течение нескольких секунд приводит к угнетению или прекращению сократительной активности.

Таким образом, возникает систолическая дисфункция левого желудочка (ЛЖ), ограниченная территорией снабжения пораженной артерии, — локальная, или регионарная, систолическая дисфункция. Локальная систолическая дисфункция является важным звеном «ишемического каскада», где она, как правило, предшествует изменениям сегмента ST на ЭКГ (рис. 1.1).



Рис. 1.1. Ишемический каскад

## 1.1.2. Ишемические состояния миокарда и их проявление

Нарушение локальной сократимости — общее проявление различных ишемических состояний миокарда. На рис. 1.2 приведена классификация нарушений сократимости, имеющих место при этих состояниях.

#### 1.1.2.1. Ишемия

Наиболее простой вид нарушений локальной сократимости связан с собственно ишемией миокарда. Нарушение сократительной функции в результате ишемии существует, пока имеется дисбаланс «потребность в кислороде — доставка». В этом случае при прекращении нагрузки, которая повышает потребность миокарда в кислороде, эпизод сократительной дисфункции заканчивается. Такая ситуация имеет место, например, при проведении стресс-теста с ЭхоКГ-контролем (нагрузка на горизонтальном велоэргометре или фармакологическая нагрузка). Врач выявляет вновь развившееся



**Рис. 1.2.** Варианты нарушений локальной сократимости и различные ишемические состояния миокарда

нарушение сократимости и прекращает нагрузку, вслед за этим наблюдается немедленное восстановление функции в зоне интереса. Аналогичные ситуации возникают регулярно и в обычной жизни пациента с хронической ишемической болезнью сердца (ИБС). Следует отметить, что большинство подобных эпизодов неглубокой ишемии бессимптомны, поскольку ишемические нарушения сократимости предшествуют в ишемическом каскаде субъективным проявлениям стенокардии.

## 1.1.2.2. Станнирование

Станнирование представляет собой «постнагрузочное» расстройство сократимости и возникает в результате затяжного дисбаланса «потребность в кислороде — доставка». В случае станнирования нарушение сократимости разрешается при прекращении этого дисбаланса не сразу, а спустя какое-то время. Станнирование можно наблюдать у тяжелого ишемического больного при стресс-тесте, когда развивается достаточно глубокая ишемия миокарда. Обычно она сопровождается выраженной депрессией, а иногда

и транзиторной элевацией сегмента ST на ЭКГ. В этой ситуации после прекращения нагрузки при выполнении стресс-ЭхоКГ можно достаточно длительно наблюдать нарушение сократимости в зоне интереса, которое, однако, спонтанно разрешается, что является обязательным признаком станнирования. В реальной жизни станнирование также регулярно возникает у больных с тяжелой ИБС, которым не проведена реваскуляризация. По-видимому, поскольку симптомы стенокардии возникают при достаточно глубокой ишемии, станнирование имеет место во время большинства приступов стенокардии.

Другой хорошо известный пример станнирования — своевременная реваскуляризация при остром инфаркте миокарда [51]. Зона некроза при этом обычно окружена зоной станнирования, которое разрешается спонтанно в течение нескольких дней [63, 94]. В результате конечная зона сократительной дисфункции после острого инфаркта миокарда (ОИМ) оказывается меньше исходной, а фракция выброса через несколько дней после ОИМ может несколько повыситься. Это одна из причин того, что риск левожелудочковой недостаточности после ОИМ ниже через несколько суток, чем в самые ранние сроки.


## 1.1.2.3. Обратимая хроническая дисфункция — «жизнеспособный миокард»

Согласно принятым сегодня взглядам, различают хроническую ишемическую дисфункцию левого желудочка при нормальном кровотоке в покое, но в условиях резкого ограничения резерва кровотока (повторяющееся станнирование) [95, 102], и дисфункцию при снижении кровотока в покое (гибернация) [86].

Оба состояния описывают общим термином «жизнеспособный миокард». Их объединяют персистирующее снижение сократительной активности миокарда как реакция на недостаточное кровоснабжение и потенциал восстановления сократимости, но только в случае проведения коронарной реваскуляризации. Оба состояния характеризуются специфическим ремоделированием — в данном случае имеются в виду изменения на внутриклеточном уровне. В результате восстановление функции левого желудочка после операции происходит постепенно, занимая обычно 6—12 нед.

### 1.1.2.4. Необратимая хроническая дисфункция

Необратимая хроническая дисфункция миокарда может быть связана с развитием некроза — острым инфарктом миокарда (ОИМ) или с наличием рубца, в который превращается некротизированный миокард, — это происходит в течение примерно 6 нед. Рубцовая ткань, помимо нарушения сократимости,



**Рис. 1.3.** Острый инфаркт миокарда: a — диастола; миокард нормальной структуры и толщины, в том числе в зоне поражения (*стрелка*);  $\delta$  — систола; наблюдаются утолщение и нормальная систолическая экскурсия всех сегментов, кроме нижнезадних отделов левого желудочка (зона острого инфаркта миокарда)

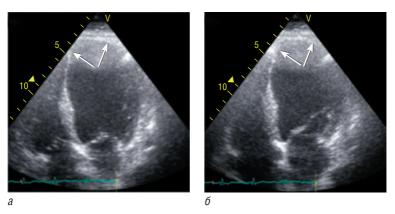



Рис. 1.4. Постинфарктный кардиосклероз; a — диастола; истончение, фиброз верхушки левого желудочка (стрелки); за счет постинфарктного ремоделирования левый желудочек увеличен, умеренная диастолическая деформация полости;  $\delta$  — систола; наблюдаются утолщение и нормальная систолическая экскурсия всех сегментов, кроме зоны рубца (верхушки)