

Клиническая лабораторная диагностика Клиническая фармакология

А.А. Дутов

Биомедицинская хроматография

Специальная часть 2

Анализ эндогенных веществ в биологическом материале

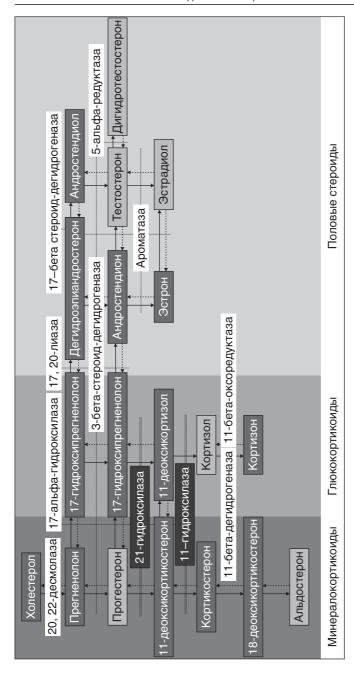
СТЕРОИДНЫЕ ГОРМОНЫ (ОБЩИЕ СВЕДЕНИЯ И КЛИНИЧЕСКАЯ ЗНАЧИМОСТЬ)

По биологической роли стероидные гормоны принято разделять на надпочечниковые (кортикостероиды) и половые (андрогены, эстрогены, гестагены). Их принято также подразделять на первичные стероиды, вторичные и метаболиты [Shackleton C.H.L., 1986, с дополнениями] (табл. 33).

Таблица 33. Классификация стероидных гормонов

Первичные стероиды	Типичные метаболиты
Кортизол	Глюкурониды: тетрагидрокортизон, тетрагидрокортизол, 5α -тетрагидрокортизол, α - и β -кортолон и α - и β -кортол, кортоевая кислота. Неконъюгированные: кортизол, 20-дигидрокортизол, 6β -гидроксикортизол
Альдостерон	Глюкурониды: тетрагидроальдостерон, альдостерон-глюкуронид, дигидроальдостерон, изоальдостерон
Прогестерон	Глюкурониды: прегнандиол, 21-гидрокси- прогестерон
Тестостерон	Глюкурониды: тестостерон-глюку- ронид, андростерон, этиохоланон. Неконъюгированные: эстрадиол

Окончание табл. 33


Первичные стероиды	Типичные метаболиты
Дигидротестостерон	Глюкурониды: этиохоланон
Эстрадиол	Глюкурониды: эстриол
Вторичные стероиды	
11-Деоксикортизол (S)	Глюкурониды: Тетрагидро-S
21-Деоксикортизол	Глюкурониды: тетрагидро-21-дезоксикортизол
17α-Гидроксипрогестерон	Глюкурониды: прегнантриол, прегнантриолон, 17α -гидроксипрегнанолон
Кортикостерон (В)	Глюкурониды: тетрагидроВ, 5α-тетрагидроВ
Деоксикортикостерон (DOC)	Глюкурониды: тетрагидроDOC
18-гидрокси-DOC	Глюкурониды: 18-тетрагидроDOC
18-гидрокси-В	
18-гидроксикортизол	
Андростендион	Андростерон, этиохоланон, 5-андростен- 3β , 16α , 17β -триол
Дегидроэпиандростерон (ДГЭА)	16α-гидрокси-ДГЭА
Гормональные прекурсоры	
ДГЭА сульфат (ДГЭА-S)	16α-гидрокси-ДГЭА, андростендиол дисульфат, андростентриол сульфат
Прегненолон сульфат	16lpha-гидроксипрегненолон сульфат, андростентриол суль-
17α-Гидроксипрегненолон сульфат	фат, прегнендиол сульфат, прегнентриол сульфат, андростендиол дисульфат, 21-гидроксипрегненолон дисульфат

В рутинной клинической практике обычно определяют первичные стероиды радиоиммунными, иммуноферментными или иммунофлюоресцентными методами, которые могут давать перекрестные реакции с вторичными стероидами и метаболитами. Селективный анализ может быть реализован только с помощью хроматографических методов.

ОПРЕДЕЛЕНИЕ СТЕРОИДНЫХ ГОРМОНОВ В КРОВИ (КОРТИЗОЛ И ВТОРИЧНЫЕ КОРТИКОСТЕРОИДЫ, ПРОГЕСТЕРОН И 17α -ГИДРОКСИПРОГЕСТЕРОН, ДГЗА-СУЛЬФАТ)

Кортизол и вторичные кортикостероиды

Синтез глюкокортикоидов осуществляется в пучковой зоне надпочечников, минералокортикоидов — в клубочковой и андрогенов в сетчатой зоне. Лимитирующий этап синтеза (и место действия АКТГ) — превращение холестерола в прегненолон.

Рис. 66. Этапы биосинтеза кортикостероидов (схема, базирующаяся на данных *Makin H.L.J* и *Hefmann E.*, 1988, и Мауо Medical Laboratories, 2013)

Химическая структура кортикостероидов — на рис. 67.

Рис. 67. Химическая структура кортикостероидов. Значения logP в основном совпадают с порядком элюирования (табл. 36)

Классифицируются кортикостероиды на глюкокортикоиды и минералокортикоиды. Из глюкокортикоидов наиболее значимы и активны кортизол и кортикостерон, кортизон рассматривают как неактивный метаболит кортизола [Steroid Analysis, 2010]. Более чем 90% циркулирующего в крови кортизола связано с белками плазмы, из них 85% приходится на кортикостерон-связывающий-глобулин и 10% — на альбумин. Менее 1% общего кортизола выводится с мочой в неизмененном виде, остальное — в виде метаболитов и конъюгатов. Наиболее значимым из минералокортикоидов является альдостерон [Steroid Analysis, 2010].

Содержание кортизола в плазме исследуют при нарушении синтеза глюкокортикоидов, например при болезни Аддисона (кортикостероидная недостаточность) или при синдроме Кушинга (избыток кортикостероидов). Свободный кортизол в моче является более чувствительным и специфичным тестом в ранней диагностике синдрома Кушинга [Kabra P.M., 1988]. Специфическим маркером синдрома Кушинга может быть повышенная экскреция 6β-гидроксикортизола с мочой [Gerber-Taras E. et al., 1981], а синдрома Конна (первичный гиперальдостеронизм) — 18-гидроксикортизола и 18-оксокортизола [Shackleton C.H.L., 1986]. При опухолях надпочечников анализ стероидов в биологических жидкостях и тканях позволяет установить не только сам факт опухолевого процесса (причем раньше морфологических методов), но и дать его точную биохимическую характеристику [Kessler M.J., 1982]. В частности, опухолевая ткань надпочечников содержит значительные количества кортизола, 11-дезоксикортизола, 21-дезоксикортизола и 17α-гидроксипрогестерона [Kessler M.J., 1982]. Точную диагностику ферментопатий при врожденной дисфункции коры надпочечников можно произвести только с помощью хроматографических методов. В частности, при гиперплазии надпочечников 1-го типа блокируется превращение 17α-гидроксипрогестерона в соединение S (дефект 21-гидроксилазы). В крови низкий уровень кортизола, 11-дезоксикортизола (S) и повышенный уровень 17α-гидроксипрогестерона (до сотен нмоль/л [Steroid Analysis, 2010]). При гиперплазии 2-го типа соединение S не превращается в кортизол (дефект 11-гидроксилазы). В крови низкий уровень кортизола и повышенный — 11-дезоксикортизола, дезоксикортикостерона и андрогенов. Многие случаи женского бесплодия и избыточного оволосения нередко обусловлены патологией надпочечников, в частности избыточной выработкой надпочечникового андрогена — ДГЭА (дегидроэпиандростерон). Другой клинический аспект — анализ состояния гормонального фона у больных, получающих синтетические кортикостероиды. Основная задача — хроматографическое разделение их с эндогенными кортикостероидами.