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  Examination style paper (I)
1) Given that 4(3 )yx , express y in terms of x.            [3] 
2) Solve the inequality 2 1x x .              [4] 
3) The parametric equations of a curve are 2 s i n 2x , 1 c o s 2y . 
Show that tandy

dx
.                [5] 

4) (I) Express 7 c o s 2 4 s i n  in the form c o s ( )R , where R >0 and 0 9 0 , giving the exact value of R and the value 
of  correct to 2 decimal places. 

(II) Hence solve the equation 
7 c o s 2 4 s i n 1 5 , 
giving all solutions in the interval 0 3 6 0 .            [4] 
5) In a certain industrial process, a substance is being in a container. The mass of the substance in the container t minutes 

after the start of the process is x grams. At any time, the rate of formation of the substance is proportional to its mass. Also, 
throughout the process, the substance is removed from the container at a constant rate of 25 gram per minute. When t=0, 
x=1000 and 75dx

dt
 

(I) Show that x and t satisfy the differential equation 0,1( 250)dx x
dt

.         [2] 

(II) Solve this differential equation, obtaining an expression for x in terms of t.       [6] 
6) (I) By sketching a suitable pair of graphs, show that the equation 
2 c o t 1 xx e  where x is in radians, has only one root in the interval 10

2
x .       [2] 

(II) Verify by calculation that this root lies between 0.5 and 1.0.         [2] 
(III) Show that this root also satisfies the equation 1 2tan ( )

1 xx
e

         [1] 
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(IV) Use the iterative formula 1
1

2tan ( )
1 nn xx
e

 

With initial value x1=0.7, to determine this root correct to 2 decimal places. Give the result of each 
iteration to 4 decimal places.               [3] 

7) The complex number 2+i is denoted by u. Its complex conjugate is denoted by u*. 
(I) Show, on a sketch of an Argand diagram with origin O, the points A,B and C representing the complex numbers u, u* 

and u+u* respectively. Describe in geometrical terms the relationship between the four points O, A, B and C.   [4] 
(II) Express

*

u
u

 in the form x+iy, where x and y are real.           [3] 

(III) By considering the argument of 
*

u
u

, or otherwise, prove that 1 14 1tan ( ) 2 tan ( )
3 2

. 

8) 

 
The diagram shows a sketch o the curve

1
2 lny x x  and its minimum point M. The curve cuts the x-axis at the point (1.0). 

(I) Find the exact value of the x-coordinate of M.            [4] 
(II) Use integration by parts to find the area of the shaded region enclosed by the curve, the x-axis and the line x=4. Give 

your answer correct to 2 decimal places.              [5] 

1 4 х

y

М

О

Пример экзаменационной работы (I)
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9) (I) Express 
2

10
(2 )(1 )x x

 in partial fractions.            [5] 

(II) Hence, given that 1x , obtain the expansion of 
2

10
(2 )(1 )x x

 in ascending powers of x, up to and including the term in 

x3, simplifying the coefficients.                [5] 
10) The points A and B have position vectors, relative to the origin O, given by 

1
3
5

OA  and 
3

1
4

OB . 

The line l passes through A and is parallel to OB. The point N is the foot of the perpendicular from B to l. 
(I) State a vector equation from the line l.             [1] 
(II) Find the position vector of N and show that BN=3.           [6] 
(III) Find the equation of the plane containing A, B and N, giving your answer in the form ax+by+cz=d.   [5] 
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 2 Core Mathematics C2
 

Algebra and functions
 

1.  1. Division of polynomials

    a(x)   b(x) 
,      

a x b x q x + r x ,  ,  b(x)   
 

Theory
When a polynomial, a(x), is divided by non – constant 

divisor, b(x), the quotient q(x) and the remainder r(x) are 
defined by the identity a x b x q x + r x  

      x4+x+2  
x+1 

Example
Find the quotient and remainder when x4+x+2 is divided 

by x+1 

1) 4 3 22 ( 1)( )x x x Ax Bx Cx D R  
2) 4 4 3 22 ( ) ( ) ( )x x Ax A B x B C x C D x D R  
3) 1=A 
4) 0=A+B, B= 1 
5) 0=B+C, C=1 
6) 1=C+D, D=0 
7) 2=D+R, R=2 
8)   3 2x x x ,   2 

Solution
1) 4 3 22 ( 1)( )x x x Ax Bx Cx D R  
2) 4 4 3 22 ( ) ( ) ( )x x Ax A B x B C x C D x D R  
3) 1=A 
4) 0=A+B, B= -1 
5) 0=B+C, C=1 
6) 1=C+D, D=0 
7) 2=D+R, R=2 
8) The quotient is 3 2x x x  and remainder is 2 
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Work paper
Assignment 1 Assignment 2
Find the quotient and remainder when 4 23 2x x is 

divided by 2 2 2x x  
Find the quotient and remainder when the first 

polynomial is divided by the second. 
4 3 22 7 5x x x , 2 2 1x x  

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
 

Core Mathematics C2 
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2.    2. The factor theorem

  p(x) 
a)  (x-t)  p(x),  p(t) = 0 
b)  p(t) = 0,  (x-t)  p(x) 

   t —   p  Z,  
   x:  f (x)  (x-t).  

      

Theory
Let p(x) be a polynomial. Then 
a) if (x-t) is a factor of p(x), then p(t) = 0 
b) if p(t) = 0, then (x-t) is a factor of p(x) 
The second of this results is called the factor theorem 

    3 2 5 3x x x . 
  3 2 5 3 0x x x  

Example
Find the factors of 3 2 5 3x x x , and hence solve the 

equation 3 2 5 3 0x x x  

1) 3 2( ) 5 3p x x x x  
2)  x=1, 

3 2 3 2( ) 5 3 0 (1) 1 1 5 1 3 8 0p x x x x p  
3)  x= 1, 3 2( 1) ( 1) ( 1) 5 ( 1) 3 0p  

, (x+1)   
4) 3 2 2 25 3 ( 1)( 2 3) ( 1) ( 3)x x x x x x x x , x=-1, x=3 

Solution
1) 3 2( ) 5 3p x x x x  
2)Try x=1, 

3 2 3 2( ) 5 3 0 (1) 1 1 5 1 3 8 0p x x x x p  
3)Try x=-1, 3 2( 1) ( 1) ( 1) 5 ( 1) 3 0p , so (x+1) is a 

factor 
4) 3 2 2 25 3 ( 1)( 2 3) ( 1) ( 3)x x x x x x x x , x=-1, x=3 

 
 
 
 
 

Базовый уровень С2
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Work paper
Assignment 1 Assignment 2
Show that ( 1)x  is a factor of 3 26 1 1 5 1 2x x x and find 

the other two linear factors of the expression 
Find the value of a for which ( 2 )x  is a factor of 

3 23 2x a x x

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
 

Core Mathematics C2 
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3.     3. The factor theorem (extended form)

  p(x). 
a)  (sx-t)  p(x),  p( t

s
)=0 

b)  p( t
s

)=0, (sx-t)  p(x) 

  t
s

 —   p  Z,   

  x:  f (x)  (sx-t).   
      

Theory
Let p(x) be a polynomial. Then 
a) if (sx-t) is a factor of p(x), then p( t

s
)=0 

b) if p( t
s

)=0, then (sx-t) is a factor of p(x) 

The second of this results is called the extended form of 
the factor theorem 

     
3 2( ) 3 4 5 6p x x x x  

Example
Find the factors of 3 2( ) 3 4 5 6p x x x x  

1) 1; 3s . 
2) 1; 2 ; 3 ; 6t . 
3)     , : 

3 22 2 2 2( ) 3 ( ) 4 ( ) 5 ( ) 0
3 3 3 3

p , , (3x-2) 

  
4) 3 2 2( ) 3 4 5 6 (3 2)( 2 3)p x x x x x x x  

Solution
1) 1; 3s  
2) 1; 2 ; 3 ; 6t  
3) Working through all these in turn, find that 

3 22 2 2 2( ) 3 ( ) 4 ( ) 5 ( ) 0
3 3 3 3

p , so (3x-2) is a factor 

4) 3 2 2( ) 3 4 5 6 (3 2)( 2 3)p x x x x x x x  

 
 
 

Базовый уровень С2
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Work paper
Assignment 1 Assignment 2
Factorize cubic polynomials p(x).
1) 3 23 1 2 4x x x  
2) 3 26 7 2x x x  

Solve the equation
3 24 1 2 5 6 0x x x  

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
 

Core Mathematics C2 
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4.     4. The remainder theorem

   p(x)  sx-t  
      
( )tp
s

 

Theory
When p(x) is divided by sx-t, the remainder is the 

constant ( )tp
s

 

    x3-3x+4  2x+3. 
Example
Find the remainder when x3-3x+4 is divided by 2x+3 

1) 3( ) 3 4p x x x  
2)  : 33 3 3 1( ) ( ) 3 ( ) 4 5

2 2 2 8
p  

Solution
1) 3( ) 3 4p x x x  
2) 33 3 3 1( ) ( ) 3 ( ) 4 5

2 2 2 8
p  

 
 
 
 
 
 
 
 
 
 
 
 

Базовый уровень С2

26



 
 
 
 

Work paper
Assignment 1 Assignment 2
Find the quotient and remainder when the first 

polynomial is divided by the second. 
3 23 2 1x x x  

2x–1 

Find the quotient and remainder when the first 
polynomial is divided by the second. 

3 22 5 3 6x x x  
3x+1 

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
 

Core Mathematics C2 
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   Coordinate geometry in the (x, y) plane
 

5.      5.The normal to a curve at a point

,     
       , 

      . 
        

 m,          
1
m  

 
 

Theory
The line passing through the point of contact of the 

tangent with the curve which is perpendicular to the tangent 
is called the normal to a curve at a point. 

If the gradient of the tangent is m, then the gradient of 
the normal is 1

m  
 

 х

y

normal
at A tangent

at A

y = f(x)

х

y

normal
at A tangent

at A

y = f(x)

Базовый уровень С2
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     2y x     
 3x  

Example
Find the equation of the normal to the curve 2y x  at 

the point for which 3x  

1)       
 2y x   2 .      6 

2)     1 1
6 6

 

3)  ,    
(x1, y1)     ,  

: 1 1( )y y m x x  
4)     ( 3 , 9 ) : 19 ( ( 3))

6
y x . 

  : 6y=x+57 

Solution
1) The gradient formula for the curve 2y x  is 2x. So, the 

gradient is 6 
2) The normal has a gradient of 1 1

6 6
 

3) The equation of the line through (x1, y1) with gradient 
m is 1 1( )y y m x x  

4) Therefore the equation of the normal at ( 3 , 9 )  is 
19 ( ( 3))
6

y x , which simplifies to 6y=x+57 

 
 
 
 
 
 
 
 
 
 

Core Mathematics C2 
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Work paper
Assignment 1 Assignment 2
Find the gradient of the tangent to the graph of 2y x , 

at each of the points with the given x-coordinate. 
a) 1; b) 4; c) 0 

The y- coordinate of a point P on the graph 2 5y x  is 9. 
Find the two possible values of the gradient of the tangent to 

2 5y x  at P 
Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
 

Базовый уровень С2
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 The binomial expansion
 

6.  6. The triangle number sequence

   « »  
  . 

 
    1, 3, 4, 10, 15, 21. 

     
  1. 
      

 1  r: 1 ( 1)
2
r r  

Theory
The numbers of dots in the triangular patterns are 

called triangle numbers. 

 
The triangle number are 1, 3, 4, 10, 15, 21. The 

difference between neighboring triangle numbers increases 
by 1 each time. 

The sum of the natural numbers from 1 to r is 1 ( 1)
2
r r  

     55 
.     11 ? 

Example
The 10th pattern of triangle numbers has 55 dots. How 

many dots will the 11th pattern have? 

Core Mathematics C2 
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1)     1  r 1 ( 1)
2
r r , 

 r=11. 
2)    1 11(11 1) 66

2
 

 

Solution
1) The sum of the natural numbers from 1 to r is 

1 ( 1)
2
r r , r=11 

2) The 11th pattern has 1 11(11 1) 66
2

 dots 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Базовый уровень С2
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Work paper
Assignment 1 Assignment 2
Find the sum of the natural numbers from 1 to 100 

inclusive 
Find and simplify an expression for the sum of the 

natural numbers from (n+1) to 2n inclusive 
Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
 

Core Mathematics C2 
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7. 7. Pascal sequence

    : 

1 1
n nn r
r rr

,  r = 0, 1, 2, 3 … 

Theory
The general definition of a Pascal sequence, whose 

terms are denoted by n
r

, is 
1 1

n nn r
r rr

, where r = 0, 1, 

2, 3 … 

    n=5 
Example
Find the Pascal sequence for n=5 

0 1p ; 

1
5 0 1 5
0 1

p ; 
2

5 1 5 10
1 1

p ; 
3

5 2 10 10
2 1

p . 

4
5 3 10 5
3 1

p ; 
5

5 4 5 1
4 1

p ; 
6

5 5 1 0
5 1

p . 

   n=5  : 5; 
10; 10; 5; 1; 0 

Solution
0 1p ; 

1
5 0 1 5
0 1

p ; 
2

5 1 5 10
1 1

p ; 
3

5 2 10 10
2 1

p ; 

4
5 3 10 5
3 1

p ; 
5

5 4 5 1
4 1

p ; 
6

5 5 1 0
5 1

p . 

The Pascal sequence for n=5 is: 5; 10; 10; 5; 1; 0 

 
 
 
 
 
 
 
 

Базовый уровень С2

34



 
 
 
 

Work paper
Assignment 1 Assignment 2
Find the Pascal sequence for n=6 Use the formula !

! ( 1)!
n n
r r n

 to write the following in 

terms of factorials: 

) 11
4

 b) 11
7

 

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
 

Core Mathematics C2 
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8.  8. Pascal’s triangle

 ,   
  ,  

 .      
    .     

    . 

 

Theory
The complete pattern of Pascal sequence, without the 

trailing zeros, is called Pascal’s triangle. Every number in this 
pattern except for the first is the sum of the two numbers 
most closely above it. 

 

 4-     
Example
Continue Pascal’s triangle for row number 4 

1)    n=4: 5; 10; 10; 5; 1; 0.
2)  : 

   1 
  1  2 1
  1 3  3 1
 1 4  6 4 1

1  5 10  10 5 1
 

Solution
1) The Pascal sequence for n=4 is: 5; 10; 10; 5; 1; 0 
2) Pascal’s triangle is 

 1  
 1 2 1  
 1 3 3 1  

1 4 6 4 1  
1  5 10 10 5 1 

1 1

1 1

2 2

3 3

4 4

1 1

3 3

6 6
1 1

4 41 1

1 1

1 1

1 1

1 1

Базовый уровень С2
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Work paper
Assignment 1 Assignment 2
Continue Pascal’s triangle for row number 6 Continue Pascal’s triangle for row number 7
Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution

Core Mathematics C2 
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9. .  9. Combinations and factorial notations

1) ! ( 1 ) ( 2 ) ( 3 ) . . . 3 2 1n n n n n  
2)  , 0 ! 1  
3)    r   

 n  nc  n
r

    

!
( )! !
n

n r r
 

Theory
1) ! ( 1 ) ( 2 ) ( 3 ) . . . 3 2 1n n n n n  
2) By definition, 0 ! 1  
3) The number of ways of choosing r items from a group 

of n items is written nc, or n
r

 and is calculated by !
( )! !
n

n r r
 

   : 

a) 
3

2C  b) 
10 !
9 !  

Example
Find the value of the following: 

a) 
3

2C  b) 
10 !
9 !  

a) 
3

2
3! 6 3

(3 2)!2! 1 2
C

 

b) 
10! 1 2... 9 10 10
9! 1 2... 9  

Solution

a) 
3

2
3! 6 3

(3 2)!2! 1 2
C

 

b) 
10! 1 2... 9 10 10
9! 1 2... 9  

 
 
 
 
 
 

Базовый уровень С2
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Work paper
Assignment 1 Assignment 2
Calculate:
a) 4! b) 10

9C  
Calculate:

a) 4
1

 b) 6
3C  

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
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10.  10. The factorial sequence

1)   n (  n!) —  
     1  n 
. 

 0!=1; 1!=1 r!=1 2 3 4…r 
2)     

1 ( 1)r rf f r ,  r = 0, 1, 2, 3… 
0 1f  
1 0 1 1 1 1f f  
2 1 2 1 2 2f f  
3 2 2 2 3 6f f  

   
   : 
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 

39916800, 479001600, 6227020800. 
3)      

  n    

! 2
nnn n

e  
 
 
 

Theory
1) The factorial of a non-negative integer n, denoted by 

n!, is the product of all positive integers less than or equal to 
n. 

Remember: 0!=1; 1!=1 r!=1 2 3 4…r 
2) To get the factorial sequence use the formula 

1 ( 1)r rf f r , where r = 0, 1, 2, 3… 
0 1f  
1 0 1 1 1 1f f  
2 1 2 1 2 2f f  
3 2 2 2 3 6f f  

The first terms of the factorial sequence are: 
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 

39916800, 479001600, 6227020800, 
3) Stirling’s approximation (or Stirling’s formula) is an 

approximation for large factorials. 

! 2
nnn n

e  
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)   14 !
13!

 

b)  5!,    

Example
) Simplify the following 14 !

13!
 

b) Calculate 5!, using Stirling’s formula 

) 14 ! 1 2 3...14 14
13! 1 2 3...13

 

b) 555! 2 3,14 5 ( ) 199, 999
2, 71

 

Solution
) 14 ! 1 2 3...14 14

13! 1 2 3...13
 

b) 555! 2 3.14 5 ( ) 199.999
2.71
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Work paper
Assignment 1 Assignment 2
Write the following in terms of factorials: 

) ( 1)( 2 )n n n  b) ( 6 ) ( 5 ) ( 4 )n n n  
Calculate 6!, using Stirling’s formula

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
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11.  (x+y)n, n >0 11. Expansion of (x+y)n, n >0

  n    : 
1 2 2( ) ...

0 1 2
n n n n nn n n n

x y x x y x y y
n  

Theory
The binomial theorem states that, if number is a natural 

number 1 2 2( ) ...
0 1 2

n n n n nn n n n
x y x x y x y y

n  

      22(1 )x  
Example
Find the first three terms in the expansion in ascending 

power of x of the following: 22(1 )x  

1) 22
1

0
 

2) 22 22! 22
1 1!(22 1)!

x x x  

3) 2 2 222 22! 231
2 2!(22 2)!

x x x  

Solution

1) 22
1

0
 

2) 22 22! 22
1 1!(22 1)!

x x x  

3) 2 2 222 22! 231
2 2!(22 2)!

x x x  
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Work paper
Assignment 1 Assignment 2
Find the first three terms in the expansion, in ascending 

power of x, of (1+2x)8. By substituting x = 0.01, find an 
approximation to 1.028 

Find the first three terms in the expansion, in ascending 
power of x, of (2+5x)12. By substituting a suitable value for x, 
find an approximation to 2.00512 to 2 decimal places 

Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
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12.  (a + bx)n, n >0 12. Expansion of (a + bx)n, n >0

1)
1 2 2 2 3 3 3( ) ...

0 1 2 3
n n n n n n nn n n n n

a bx a a bx a b x a b x b x
n

 

2) !
!( )!

n n
k k n k

 

Theory
1)

1 2 2 2 3 3 3( ) ...
0 1 2 3

n n n n n n nn n n n n
a bx a a bx a b x a b x b x

n
 

2) !
!( )!

n n
k k n k

 

     (2-3x)10 
Example
Find the first four terms in the expansion of (2-3x)10 

10 10 9 8 210 10
(2 3 ) 2 2 ( 3 ) 2 ( 3 )

1 2
x x x

7 310
2 ( 3 ) ...

3
x  

= 210 91024 10 512 3 256 9
1 2

x x

310 9 8 128 27 ...
1 2 3

x  
2 31 0 2 4 1 5 3 6 0 1 0 3 6 8 0 4 1 4 7 2 0 . . .x x x  

Solution
10 10 9 8 210 10

(2 3 ) 2 2 ( 3 ) 2 ( 3 )
1 2

x x x

7 310
2 ( 3 ) ...

3
x  

= 210 91024 10 512 3 256 9
1 2

x x

310 9 8 128 27 ...
1 2 3

x  

2 31 0 2 4 1 5 3 6 0 1 0 3 6 8 0 4 1 4 7 2 0 . . .x x x  
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Work paper
Assignment 1 Assignment 2
Find the first three terms in the expansion in ascending 

power of x of (1-x)30 
Find the first three terms in the expansion in ascending 

power of x of (1-4x)18 
Solution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution
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