Нормальная физиология Типовые тестовые задания

Учебное пособие

Под редакцией профессора В.П. Дегтярева

2-е издание, переработанное и дополненное

Рекомендовано Координационным советом по области образования «Здравоохранение и медицинские науки» в качестве учебного пособия для использования в образовательных учреждениях, реализующих основные профессиональные образовательные программы высшего образования уровня специалитета (31.05.03 «Стоматология» и 31.05.01 «Лечебное дело»)

Регистрационный номер рецензии 756 от 20 июня 2019 года

СОДЕРЖАНИЕ

Введение	8
Раздел 1. Возбудимые ткани	11
1.1. Биоэлектрические явления	11
1.2. Законы раздражения	26
1.3. Нерв. Синапс. Мышца	33
Раздел 2. Центральная нервная система	44
2.1. Возбуждение в центральной нервной системе	44
2.2. Торможение в центральной нервной системе	56
2.3. Мышечный тонус	66
2.4. Автономная нервная система	77
Раздел 3. Железы внутренней секреции	86
Раздел 4. Дыхание	95
4.1. Внешнее дыхание	
4.2. Регуляция дыхания	112
Раздел 5. Кровь	124
 5.1. Общие свойства крови 	
5.2. Защитные функции крови	
Раздел 6. Терморегуляция	143
Раздел 7. Обмен веществ и энергии	156
Раздел 8. Выделение	170
Раздел 9. Пищеварение	191
9.1. Общие вопросы пищеварения	
9.2. Пищеварение в полости рта	196
9.3. Пищеварение в желудке	203
9.4. Пищеварение в двенадцатиперстной кишке	210
9.5. Пищеварение в кишечнике	219
Раздел 10. Кровообращение	225
10.1. Свойства сердечной мышцы	225
10.2. Регуляция работы сердца	238
10.3. Периферическое кровообращение	
10.4. Методы исследования деятельности сердца и сосудов .	252
Раздел 11. Сенсорные системы	256
11.1. Общие свойства сенсорных систем	
11.2. Зрительная сенсорная система	267

Содержание 7

11.3. Слуховая сенсорная система
11.4. Соматосенсорная система
11.5. Вкусовая и обонятельная сенсорные системы
11.6. Вестибулярная сенсорная система
11.7. Болевая сенсорная система
Раздел 12. Высшая нервная деятельность
12.1. Условный рефлекс и типы высшей нервной
деятельности
12.2. Высшие психические функции
12.3. Целенаправленная деятельность
Раздел 13. Функциональные состояния организма
при целенаправленной деятельности
13.1. Эмоционально напряженная деятельность 359
13.2. Монотонная деятельность
13.3. Физически напряженная деятельность
Раздел 14. Физиология челюстно-лицевой области
14.1. Общие вопросы физиологии челюстно-лицевой
области
14.2. Сенсорная функция 409
14.3. Боль в челюстно-лицевой области
14.4. Защитная функция 430
14.5. Пищеварительная функция
14.6. Коммуникативная функция 455
14.7. Возрастные особенности челюстно-лицевой области 465
14.8. Взаимодействие органов челюстно-лицевой области
с различными системами организма
14.9. Адаптация и компенсация
Ответы
Список литературы

Раздел 1

ВОЗБУДИМЫЕ ТКАНИ

1.1. БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ

Выберите один правильный ответ.

- 1. Биологические мембраны, препятствуя свободной диффузии и участвуя в создании концентрационных градиентов, выполняют функцию:
 - 1) регуляторную;
 - 2) барьерную;
 - 3) рецепторную;
 - 4) межклеточного взаимодействия;
 - 5) генерации потенциала действия.
- 2. Биологические мембраны, участвуя в изменении внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, выполняют функцию:
 - 1) регуляторную;
 - 2) барьерную;
 - 3) транспортную;
 - 4) межклеточного взаимодействия;
 - 5) генерации потенциала действия.
- 3. Биологические мембраны, участвуя в преобразовании внешних стимулов неэлектрической природы в электрические сигналы, выполняют функцию:
 - 1) трофическую;
 - 2) барьерную;
 - 3) рецепторную;
 - 4) межклеточного взаимодействия;
 - 5) транспортную.
- 4. Встроенная в клеточную мембрану белковая молекула, обеспечивающая избирательный переход ионов через мембрану с затратой энергии аденозинтрифосфата ($AT\Phi$) это:
 - 1) специфический ионный канал;
 - 2) ионный насос;
 - 3) неспецифический ионный канал;
 - 4) канал утечки;
 - 5) механозависимый ионный канал.

5. Период повышения возбудимости во время развития препотенциала (местного, локального потенциала) называется:

- 1) относительной рефрактерностью;
- 2) вторичной экзальтацией;
- 3) субнормальной возбудимостью;
- 4) латентным дополнением (первичной экзальтацией);
- 5) абсолютной рефрактерностью.

6. Уменьшение мембранного потенциала покоя при действии раздражителя называется:

- 1) гиперполяризацией;
- 2) реполяризацией;
- 3) экзальтацией;
- 4) деполяризацией;
- 5) реверсией.

7. Увеличение мембранного потенциала покоя при действии раздражителя называется:

- 1) деполяризацией;
- 2) реполяризацией;
- 3) гиперполяризацией;
- 4) экзальтацией;
- 5) реверсией.

8. Изменение мембранного потенциала при возбуждении, когда цитоплазма приобретает положительный заряд по отношению к наружному раствору, называется:

- 1) гиперполяризацией;
- 2) реполяризацией;
- 3) экзальтацией;
- 4) рефрактерностью;
- 5) реверсией.

9. В цитоплазме нервных и мышечных клеток по сравнению с наружным раствором выше концентрация ионов:

- калия;
- натрия;
- 3) кальция;
- 4) хлора;
- 5) магния.

10. Белковый молекулярный механизм, обеспечивающий выведение из цитоплазмы ионов натрия и введение в цитоплазму ионов калия, — это:

- 1) потенциалзависимый натриевый канал;
- 2) потенциалзависимый неселективный канал;
- 3) натриево-калиевый насос;
- 4) хемозависимый неселективный канал;
- 5) канал утечки.

11. Обеспечение разности концентрации ионов натрия и калия между цитоплазмой и окружающей средой является функцией:

- 1) натриевого моноселективного канала;
- 2) натриево-калиевого насоса;
- 3) механозависимого ионного канала;
- 4) мембранного потенциала;
- 5) потенциала действия.

12. Разность потенциалов между цитоплазмой и окружающим клетку раствором называется:

- 1) потенциалом действия:
- 2) локальным ответом;
- 3) реверсией;
- 4) мембранным потенциалом;
- 5) реполяризацией.

13. В фазу быстрой деполяризации потенциала действия проницаемость мембраны мышечного волокна увеличивается для ионов:

- 1) калия;
- 2) натрия:
- 3) хлора:
- 4) магния;
- 5) кальция.

14. Период повышенной возбудимости в фазу следовой деполяризации называется:

- 1) вторичной экзальтацией;
- 2) относительной рефрактерностью;
- 3) субнормальной возбудимостью;
- 4) абсолютной рефрактерностью;
- 5) латентным дополнением (первичной экзальтацией).

15. Наибольший вклад в мембранный потенциал покоя нервной клетки вносит выход калия из цитоплазмы наружу через:

- 1) калиевые каналы утечки;
- 2) полиселективные каналы утечки;
- 3) калиевые каналы аномального выпрямления (Kir);
- 4) калиевые каналы задержанного выпрямления (Kv);
- 5) транспорт данного иона натриево-калиевым насосом.

16. Уровень деполяризации мембраны, при котором возникает потенциал действия, называется:

- 1) субкритическим;
- 2) критическим;
- 3) потенциалом покоя;
- 4) нулевым;
- 5) реверсией.

17. Натриевые каналы имеют ворота:

- 1) медленные активационные;
- 2) быстрые инактивационные;
- 3) медленные активационные и быстрые инактивационные;
- 4) быстрые активационные и медленные инактивационные;
- 5) не имеют ворот.

18. Восходящая фаза потенциала действия связана с повышением проницаемости для ионов:

- калия;
- кальция;
- натрия;
- 4) хлора:
- 5) магния.

19. Нисходящая фаза потенциала действия связана с повышением пронипаемости для ионов:

- натрия;
- кальция;
- 3) хлора;
- 4) калия;
- 5) магния.

20. Система движения ионов через мембрану по градиенту концентрации, не требующая затраты энергии, называется:

- 1) осмосом;
- 2) пассивным транспортом;
- 3) активным транспортом;
- 4) эндоцитозом;
- 5) экзоцитозом.

21. Система движения ионов через мембрану против концентрационного градиента, требующая затраты энергии, называется:

- 1) диффузией;
- 2) облегченным транспортом;
- 3) активным транспортом;
- 4) пассивным транспортом;
- 5) осмосом.

22. Фаза полной невозбудимости клетки называется:

- 1) относительной рефрактерностью;
- 2) субнормальной возбудимостью;
- 3) абсолютной рефрактерностью;
- 4) первичной экзальтацией;
- 5) вторичной экзальтацией.

23. Период пониженной возбудимости в фазу реполяризации потенциала действия называется:

- 1) относительной рефрактерностью;
- 2) реверсией;
- 3) вторичной экзальтацией;
- 4) абсолютной рефрактерностью;
- 5) латентным дополнением (первичной экзальтацией).

24. Соотношение проницаемости мембраны нервной клетки для ионов калия и натрия в покое составляет:

- 1) 1:0,5;
- 2) 1:1,5;
- 3) 1:0.04:
- 4) 1:20:
- 5) 1:40.

25. Соотношение проницаемости мембраны нервной клетки для ионов калия и натрия в фазу деполяризации потенциала действия составляет:

- 1) 1:0,5;
- 2) 1:20;
- 3) 1:0.04:
- 4) 1:1.5:
- 5) 1:40.

26. Натриевые каналы, открытие которых обеспечивает деполяризацию мембраны возбудимой структуры, относятся к:

- 1) неуправляемым;
- 2) хемозависимым;
- 3) потенциалзависимым;
- 4) ионным насосам:
- 5) механозависимым.

27. Калиевые каналы, открытие которых обеспечивает быструю реполяризацию мембраны, относятся к:

- 1) неуправляемым;
- 2) потенциалзависимым;
- 3) хемозависимым;
- 4) ионным насосам;
- 5) механозависимым.

28. Величина потенциала покоя близка к значению равновесного потенциала для иона:

- 1) калия;
- 2) хлора;
- 3) кальция;
- 4) натрия;
- 5) магния.

29. Разность потенциалов между электродами наблюдается, если они расположены по отношению к возбудимой клетке:

- 1) оба на наружной стороне мембраны;
- 2) оба в цитоплазме;
- один электрод на наружной стороне мембраны, другой в цитоплазме;
- для возникновения разности потенциалов необходим третий электрод;
- 5) нет правильного ответа.

30. При подпороговом раздражении нейрона наблюдается:

- 1) отсутствие изменений мембранного потенциала;
- 2) гиперполяризация;
- 3) распространяющееся возбуждение;
- 4) локальный ответ;
- 5) реверсия.

31. Чувствительность активационных ворот натриевых каналов к деполяризации определяет:

- 1) амплитуду потенциала действия (ПД);
- 2) величину мембранного потенциала покоя;
- 3) величину критического уровня деполяриции (КУД);
- 4) величину натриевого равновесного потенциала;
- 5) реполяризацию.

32. Увеличение калиевого тока во время развития потенциала действия вызывает:

- 1) быструю реполяризацию мембраны;
- 2) деполяризацию мембраны;
- 3) реверсию мембранного потенциала;
- 4) закрытие натриевых каналов;
- 5) локальный ответ.

33. При блокаде калиевых каналов нейрона наблюдается:

- 1) замедление фазы реполяризации потенциала действия;
- 2) снижение возбудимости;
- 3) уменьшение амплитуды потенциала действия;
- 4) невозбудимость клетки;
- 5) повышенная возбудимость.

34. При полной блокаде натриевых каналов нейрона наблюдается:

- 1) снижение возбудимости;
- 2) уменьшение амплитуды потенциала действия;
- 3) невозбудимость клетки;
- 4) замедление фазы деполяризации потенциала действия;
- 5) замедление фазы реполяризации потенциала действия.

35. Повышенная возбудимость клетки в фазу следовой деполяризации определяется:

- 1) инактивацией натриевых каналов;
- 2) значительным уменьшением калиевого тока;
- 3) снижением величины КУД;
- реактивацией натриевых каналов и близостью мембранного потенциала к КУД;
- 5) активацией калиевых каналов.

36. Реверсия мембранного потенциала возникает при достижении им значения:

- 1) КУД (-50 мВ);
- 2) 0 MB;
- 3) +20 MB:
- 4) +80 MB;
- 5) -80 MB.

37. Возбужденный участок наружной поверхности мембраны возбудимой ткани по отношению к невозбужденному заряжен:

- положительно;
- 2) отрицательно;
- 3) нейтрально;
- 4) не заряжен;
- 5) положительно или отрицательно в зависимости от типа клетки.

38. Внутренняя поверхность мембраны возбудимой клетки по отношению к наружной в состоянии физиологического покоя заряжена:

- 1) отрицательно;
- 2) нейтрально;
- 3) положительно;
- 4) положительно или отрицательно в зависимости от фазы дифференцировки клетки;
- 5) положительно или отрицательно в зависимости от типа клетки.

39. Потенциал, возникающий при подпороговом раздражении и подчиняющийся закону силы, называется:

- 1) локальным потенциалом;
- 2) потенциалом действия;
- 3) реполяризацией;
- 4) следовой деполяризацией;
- 5) следовой гиперполяризацией.

40. Потенциал, возникающий при пороговом раздражении и подчиняющийся закону «все или ничего», называется:

- 1) локальным потенциалом;
- 2) потенциалом действия;
- 3) реполяризацией;
- 4) следовой деполяризацией;
- 5) следовой гиперполяризацией.

41. Фаза потенциала действия, во время которой мембрана клетки становится абсолютно невозбудимой, называется:

- 1) быстрой реполяризацией;
- 2) местной деполяризацией;
- 3) быстрой деполяризацией;
- 4) следовой деполяризацией;
- 5) следовой гиперполяризацией.

42. Фаза потенциала действия, во время которой мембрана клетки имеет пониженную возбудимость (относительную рефрактерность), называется:

- 1) быстрой реполяризацией;
- 2) быстрой деполяризацией;
- 3) местной деполяризацией;
- 4) следовой деполяризацией;
- 5) овершутом.

43. Фаза потенциала действия, во время которой мембрана клетки имеет субнормальную возбудимость, называется:

- 1) следовой деполяризацией;
- 2) местной деполяризацией;
- 3) деполяризацией;
- 4) следовой гиперполяризацией;
- 5) овершутом.

44. Повышенная возбудимость клетки во время локального потенциала возникает вследствие:

- 1) инактивации натриевых каналов;
- 2) закрытия калиевых каналов;
- 3) снижения КУД;
- 4) открытия калиевых каналов;
- 5) близости мембранного потенциала к КУД.

45. Пониженная возбудимость клетки во время следовой гиперполяризапии возникает вследствие:

- 1) инактивации натриевых каналов;
- 2) закрытия калиевых каналов;
- 3) повышения КУД;
- 4) открытия калиевых каналов;
- 5) удаленности мембранного потенциала от КУД.

46. Фаза относительной рефрактерности возникает вследствие:

- 1) инактивации натриевых каналов;
- 2) закрытия калиевых каналов;
- 3) повышения КУД;
- 4) открытия калиевых и реактивации натриевых каналов;
- 5) удаленности мембранного потенциала от КУД.

47. Способность живой ткани реагировать на любые виды воздействия изменением метаболизма носит название:

- 1) проводимости;
- 2) лабильности;
- 3) возбудимости;
- 4) раздражимости;
- 5) автоматии.

- 48. Способность клеток отвечать на действия раздражителей специфической реакцией, характеризуемой временной деполяризацией мембраны и изменением метаболизма, носит название:
 - 1) раздражимости;
 - 2) возбудимости;
 - 3) лабильности;
 - 4) проводимости;
 - 5) автоматии.
- 49. Способность всех живых клеток под влиянием определенных факторов внешней или внутренней среды переходить из состояния физиологического покоя в состояние активности называется:
 - 1) раздражимостью;
 - 2) проводимостью;
 - 3) сократимостью;
 - 4) возбудимостью;
 - 5) автоматией.
- 50. Ткани, способные в ответ на действие раздражителя переходить в состояние возбуждения, называются:
 - 1) раздражимыми;
 - 2) возбудимыми;
 - 3) проводящими;
 - 4) сократимыми;
 - 5) активными.
- 51. К возбудимым тканям относятся:
 - 1) эпителиальная, мышечная;
 - 2) нервная, мышечная;
 - 3) нервная, мышечная, железистая;
 - 4) костная, соединительная;
 - 5) нет правильного ответа.
- 52. Процесс воздействия раздражителя на живую клетку называется:
 - 1) возбуждением;
 - 2) торможением;
 - 3) повреждением;
 - 4) раздражением;
 - 5) наркотизацией.

- 53. Раздражитель, к восприятию которого в процессе эволюции специализировалась данная клетка и который вызывает возбуждение при минимальных величинах раздражения, называется:
 - 1) неадекватным;
 - 2) пороговым;
 - 3) субпороговым;
 - 4) адекватным;
 - 5) максимальным.
- 54. Минимальная сила раздражителя, необходимая и достаточная для возникновения ответной реакции, называется:
 - 1) пороговой;
 - 2) сверхпороговой;
 - 3) субмаксимальной;
 - 4) подпороговой;
 - 5) субпороговой.
- 55. Порог раздражения является показателем свойства ткани:
 - 1) возбудимости;
 - 2) сократимости;
 - 3) лабильности;
 - 4) проводимости;
 - 5) автоматии.

Установите правильную последовательность.

- 56. Смены состояний мембраны в одиночном цикле возбуждения:
 - 1) следовая гиперполяризация;
 - 2) следовая деполяризация;
 - 3) местная деполяризация;
 - 4) быстрая реполяризация мембраны;
 - 5) быстрая деполяризация мембраны.

Установите соответствие.

57. Опыт: заключается:

а) первый опыт Гальвани; 1) в прикосновении к нерву

биметаллического пинцета;

б) второй опыт Гальвани; 2) в замыкании поврежденного

и неповрежденного участков мышцы нервом нервно-мышечного препарата;

в) опыт Маттеучи 3) в набрасывании нерва одного нервно-

мышечного препарата на сокращающуюся мышцу второго нервно-мышечного препарата;

4) в прикосновении нерва к активному

электроду;

5) в прикосновении нерва к индифферентному электроду.

58. Причиной сокращения мышц:	является:
а) в первом опыте Гальвани;	1) разность потенциалов между
	разнородными металлами пинцета;
б) во втором опыте	2) разность потенциалов между
Гальвани;	поврежденной и неповрежденной
	поверхностями мышцы;
в) в опыте Маттеучи	3) токи действия в мышце раздражаемого
	нервно-мышечного препарата;
	4) разность потенциалов между
	мышцей и активным электродом;
	5) разность потенциалов между
	мышцей и индифферентным электродом.
59. Ионный:	осуществляется:
а) первично-активный	1) по градиенту концентрации
транспорт;	без затраты энергии АТФ;
б) вторично-активный	2) против градиента концентрации
транспорт;	без затраты энергии АТФ на транспорт
	этого вещества;
в) пассивный транспорт	3) против градиента концентрации
	с затратой энергии АТФ на транспорт
	этого вещества;
	4) по градиенту концентрации
	с затратой энергии АТФ;
	5) по электрохимическому градиенту
	с затратой энергии АТФ.
60. В генезе мембранного	обеспечивает:
потенциала покоя	
диффузия ионов:	
а) калия;	1) создание основного компонента
	потенциала покоя;
б) натрия;	2) уменьшение потенциала покоя
	(деполяризацию);
в) хлора	3) увеличение потенциала покоя

(гиперполяризацию);

потенциала покоя;

потенциала покоя.

4) стабилизацию мембранного

5) дестабилизацию мембранного

61. Фазы рефрактерности:

- а) абсолютной:
- б) относительной

обусловлены:

- 1) инактивацией калиевых каналов;
- 2) лавинообразным открытием и последующей инактивацией натриевых каналов:
- 3) активацией работы калиево-натриевого насоса:
- 4) частичной инактивацией натриевых каналов и повышением калиевой проводимости;
- 5) реактивацией натриевых каналов и снижением калиевой проводимости.

62. Фазам потенциала действия нервной клетки:

- а) локальному ответу;
- б) деполяризации;
- в) реполяризации;
- г) следовой деполяризации;
- д) следовой

гиперполяризации

соответствуют определенные фазы возбудимости:

- 1) абсолютная рефрактерность;
- 2) относительная рефрактерность;
- 3) первичная экзальтация;
- 4) вторичная экзальтация;
- 5) субнормальная возбудимость.

63. При (определенном состоянии мембраны):

- a) распространяющейся деполяризации;
- б) реполяризации;
- в) состоянии покоя

ворота большей части натриевых каналов:

- 1) активационные открыты, инактивационные закрыты;
- 2) активационные открыты, инактивационные открыты;
- 3) активационные закрыты, инактивационные открыты;
- 4) активационные закрыты, инактивационные закрыты;
- 5) нет правильного ответа.

Определите, верны или неверны утверждения и какая связь между ними.

- 64. Натриевые, калиевые, хлорные каналы относят к моноселективным, потому что эти каналы избирательно пропускают только одноименные ионы:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.

65. Суммај	рная пров	одимость	для і	иона	определяетс	я числом	и одно-
временно	открытых	каналов,	потом	у что	воротные	каналы	состоят
из транспортной системы и воротного механизма:							
1) DDL	•						

11	DDU.	
1)	DRH.	

- 2) BHH;
- 3) HBH;
- 4) HHH;
- 5) BBB.
- 66. Ионные каналы подразделяют на управляемые (воротные) и неуправляемые (утечки), потому что каналы утечки имеют только инактивационные ворота:
 - 1) BBH;
 - 2) BBB;
 - 3) BHH;
 - 4) HHH;
 - 5) HBH.
- 67. Каналы утечки меняют свое состояние при электрических воздействиях на мембрану, потому что каналы утечки не имеют воротного механизма и всегда открыты:
 - 1) BBH;
 - 2) HBH;
 - 3) BBB;
 - 4) HHH;
 - 5) BHH.
- 68. Каналы утечки меняют свое состояние при электрических воздействиях на мембрану, потому что каналы утечки имеют воротные механизмы, зависящие от мембранного потенциала:
 - 1) BBH;
 - 2) BHH;
 - 3) BBB;
 - 4) HHH;
 - 5) HBH.
- 69. Управляемые каналы всегда открыты, потому что они не имеют воротных механизмов:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.

70.	Мембрана	клетки очень	тонкая, н	о достаточно	прочная оболочка	, по-
том	у что состо	ит из белков,	липидов и	мукополисах	аридов:	

- 1) BBH:
- 2) BBB:
- 3) HBH;
- 4) HHH:
- 5) BHH.
- 71. Мембрана возбудимых клеток в покое электрически поляризована, потому что наружная и внутренняя поверхности мембраны несут разные заряды:
 - 1) BBB;
 - 2) BHH:
 - 3) HBH;
 - 4) HHH;
 - 5) BBH.
- 72. Перенос ионов против их градиентов концентрации осуществляется потому, что утечка ионов калия создает разность потенциалов между средой и аксоплазмой:
 - 1) BBB;
 - 2) BHH:
 - 3) BBH;
 - 4) HHH;
 - 5) HBH.
- 73. Бимолекулярный слой липидов является матриксом мембраны, потому что белковые молекулы образуют каналы для воды и ионов:
 - 1) BBB;
 - 2) BHH:
 - 3) HBH;
 - 4) HHH;
 - 5) BBH.
- 74. Величина мембранного потенциала покоя близка к значению калиевого равновесного потенциала, потому что утечка ионов калия вносит преобладающий вклад в создание разности потенциалов между средой и аксоплазмой:
 - 1) BBH;
 - 2) BHH;
 - 3) BBB;
 - 4) HHH;
 - 5) HBH.

- 75. Разность концентраций калия и натрия в аксоплазме и наружной среде сохраняется потому, что всегда существует движение этих ионов через мембранные каналы утечки:
 - 1) BBB:
 - 2) BHH:
 - 3) HBH:
 - 4) BBH;
 - 5) HHH.
- 76. Разность концентраций калия и натрия в аксоплазме и наружной среде сохраняется потому, что, наряду с утечкой, существует перенос этих ионов через мембрану против концентрационного градиента.
 - 1) BBB;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBH.

1.2. ЗАКОНЫ РАЗДРАЖЕНИЯ

Выберите один правильный ответ.

- 1. Амплитуда сокращения одиночного мышечного волокна при увеличении силы раздражения выше пороговой:
 - 1) уменьшается;
 - 2) сначала увеличивается, потом уменьшается;
 - 3) увеличивается до достижения максимума;
 - 4) остается без изменений;
 - 5) нет правильного ответа.
- 2. Минимальная сила постоянного тока, вызывающая возбуждение при неограниченно долгом действии, называется:
 - 1) хронаксией;
 - 2) полезным временем;
 - 3) реобазой;
 - 4) катэлектротоном;
 - 5) анэлектротоном.
- 3. Время, в течение которого ток, равный удвоенной реобазе, вызывает возбуждение, называется:
 - 1) реобазой;
 - 2) временем реакции;
 - 3) хронаксией;
 - 4) полезным временем;
 - 5) временным порогом.

4. Закону силы подчиняется структура:

- 1) сердечная мышца;
- 2) целая скелетная мышца;
- 3) одиночное мышечное волокно;
- 4) одиночное нервное волокно;
- 5) железистая клетка.

5. Закону «все или ничего» подчиняется структура:

- 1) целая скелетная мышца;
- 2) сердечная мышца;
- 3) нервный ствол;
- 4) гладкая мышца:
- 5) экзокринная железа.

6. Приспособление возбудимой ткани к медленно нарастающему по силе раздражителю называется:

- 1) лабильностью:
- 2) функциональной мобильностью;
- 3) сенсибилизацией;
- 4) активацией;
- 5) аккомодацией.

7. При замыкании полюсов цепи постоянного тока возбудимость нерва под католом:

- 1) понижается;
- 2) повышается;
- 3) сначала понижается, затем повышается;
- 4) не изменяется;
- 5) нет правильного ответа.

8. При замыкании полюсов цепи постоянного тока возбудимость нерва под анолом:

- 1) повышается;
- 2) не изменяется;
- 3) понижается;
- 4) сначала повышается, затем понижается;
- 5) нет правильного ответа.

9. Изменение возбудимости клеток или тканей при действии отрицательного полюса постоянного тока называется:

- 1) анэлектротоном;
- 2) физическим электротоном;
- 3) аккомодацией;
- 4) катэлектротоном;
- 5) лабильностью.

- 10. Изменение возбудимости клеток или тканей при действии положительного полюса постоянного тока называется:
 - 1) катэлектротоном;
 - 2) физическим электротоном;
 - 3) анэлектротоном;
 - 4) аккомодацией;
 - 5) лабильностью.
- 11. Закон, согласно которому при увеличении силы раздражителя ответная реакция возбудимой структуры увеличивается до достижения максимума, называется законом:
 - 1) «все или ничего»;
 - 2) силы-длительности;
 - 3) аккомодации;
 - 4) силы;
 - 5) электротона.
- 12. Закон, согласно которому возбудимая структура на пороговые и сверх-пороговые раздражения отвечает максимально возможным ответом, называется законом:
 - силы;
 - 2) «все или ничего»;
 - 3) силы-длительности;
 - 4) аккомодации;
 - 5) электротона.
- 13. Закон, согласно которому пороговая величина раздражающего тока определяется временем его действия на ткань, называется законом:
 - 1) силы;
 - 2) «все или ничего»;
 - 3) силы-длительности;
 - 4) аккомодации;
 - 5) электротона.
- 14. Наименьшее время, в течение которого должен действовать стимул величиной в одну реобазу, чтобы вызвать возбуждение, называется:
 - 1) полезным временем;
 - 2) аккомодацией;
 - 3) адаптацией:
 - 4) хронаксией;
 - 5) пороговым временем.

15. При замыкании цепи постоянного тока на участке мембраны под катодом происходит изменение мембранного потенциала:

- 1) деполяризация;
- 2) гиперполяризация;
- 3) реполяризация;
- 4) поляризация;
- 5) реверсия.

16. При замыкании цепи постоянного тока на участке мембраны под анодом происходит изменение мембранного потенциала:

- 1) деполяризация;
- 2) гиперполяризация;
- 3) реполяризация;
- 4) поляризация;
- 5) реверсия.

17. При уменьшении крутизны нарастания деполяризующего тока изменяется свойство возбудимой ткани:

- 1) понижается проводимость;
- 2) понижается возбудимость;
- 3) повышается возбудимость;
- 4) повышается проводимость;
- 5) повышается лабильность.

18. При уменьшении крутизны нарастания деполяризующего постоянного тока изменение КУД происходит вследствие:

- 1) постепенного открытия натриевых каналов;
- 2) лавинообразного открытия натриевых каналов;
- 3) частичной инактивации калиевых каналов;
- 4) частичной инактивации натриевых каналов;
- 5) открытия хлорных каналов.

Установите соответствие.

19. Такое свойство возбудимых тканей, как:

- характеризуется:
- а) возбудимость;
- б) проводимость
- 1) порогом раздражения;
- 2) скоростью аккомодации;
- 3) амплитудой ПД;
- 4) длительностью ПД;
- 5) скоростью распространения ПЛ.

20. Такое свойство возбудимых тканей, как:

- а) сократимость;
- б) лабильность

характеризуется:

- 1) величиной напряжения, развиваемой мышцей при возбуждении;
- 2) полезным временем;
- 3) максимальным числом импульсов, проводимых в единицу времени

без искажения;

- 4) амплитудой ПД;
- 5) порогом раздражения.

21. Законам раздражения возбудимых тканей:

- а) силы-длительности;
- б) аккомодации;
- в) полярному закону

соответствуют понятия (термины):

- реобаза;
- хронаксия;
- 3) катэлектротон;
- 4) градиент;
- 5) анэлектротон.

22. Законам раздражения возбудимых тканей:

- а) силы;
- б) «все или ничего»

подчиняются структуры:

- 1) скелетная мышца;
- 2) сердечная мышца;
- 3) нервное волокно;
- 4) мышечное волокно; 5) нервный ствол.
- 23. К раздражителям:
- а) физическим;
- б) химическим;
- в) физико-химическим
- относится (-сятся):
- 1) электрический ток;
- 2) осмотическое давление;
- 3) кислоты;
- 4) звуковые колебания;
- 5) механические воздействия.

Определите, верны или неверны утверждения и какая связь между ними.

- 24. Скелетная мышца сокращается по закону «все или ничего», потому что она состоит из волокон разной возбудимости:
 - 1) HBH;
 - 2) BHH;
 - 3) BBB;
 - 4) HHH;
 - 5) BBH.

25.	Сердечная мышца сокращается по закону «все или ничего»,	потому ч	то
вол	окна сердечной мышцы связаны друг с другом нексусами:		

- 1) BBH;
- 2) BHH;
- 3) HBH;
- 4) BBB;
- 5) HHH.
- 26. Сердечная мышца сокращается по закону «все или ничего», потому что она сокращается по типу одиночного сокращения:
 - 1) BBH:
 - 2) BHH;
 - 3) HBH;
 - 4) HHH:
 - 5) BBB.
- 27. Сердечная мышца сокращается по закону «все или ничего», потому что она более возбудима, чем скелетная:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.
- 28. Сердечная мышца сокращается по закону силы, потому что волокна сердечной мышцы связаны друг с другом нексусами:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH:
 - 4) HHH;
 - 5) BBB.
- 29. Сердечная мышца сокращается по закону силы, потому что состоит из изолированных друг от друга волокон разной возбудимости:
 - 1) BBH;
 - 2) BHH;
 - 3) HHH;
 - 4) BBB:
 - 5) HBH.
- 30. Сердечная мышца более возбудима по сравнению со скелетной, потому что волокна сердечной мышцы связаны друг с другом нексусами:
 - 1) BBH;
 - 2) HBH;
 - 3) BBB;
 - 4) HHH;
 - 5) BHH.

BBH;
 BHH;

3) BBB;	
4) HBH;	
5) HHH.	
32. Медленное нарастание деполяризующего тока приводит к понижения	0
возбудимости вплоть до ее исчезновения, потому что при этом происходи	T
частичная инактивация натриевых и активация калиевых каналов:	
1) BBH;	
2) BHH;	
3) HBH;	
4) HHH;	
5) BBB.	
33. Медленное нарастание деполяризующего тока приводит к повышения	
возбудимости, потому что при этом происходит частичная инактивация на	
триевых и активация калиевых каналов:	
1) BBH;	
2) BHH;	
3) HBH;	
4) HHH;	
5) BBB.	
34. При замыкании цепи постоянного тока под катодом происходит по	-
вышение возбудимости, потому что мембранный потенциал под катодог	M
уменьшается:	
1) BBH;	
2) BHH;	
3) HBH;	
4) HHH;	
5) BBB.	
35. При замыкании цепи постоянного тока под анодом происходит повы	-
шение возбудимости, потому что мембранный потенциал под анодом уве	-
личивается:	
1) BBH;	
2) BHH;	
3) HBH;	
4) HHH;	
5) BBB.	

31. Амплитуда локального ответа не зависит от силы раздражения, потому что развитие локального ответа подчиняется закону «все или ничего»:

- 36. При длительном воздействии постоянного тока под катодом происходит повышение возбудимости, потому что при длительном действии электрического тока натриевые каналы мембраны инактивируются:
 - 1) BBH:
 - 2) BHH:
 - 3) HBH:
 - 4) HHH;
 - 5) BBB.
- 37. Возбуждение по волокнам типа А проводится быстрее, чем по В и С, потому что волокна типа А большего диаметра и миелинизированы.
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.
- 38. Возбуждение по волокнам типа С проводится быстрее, чем по А и В, потому что волокна типа С меньшего диаметра и немиелинизированы.
 - 1) BBH:
 - 2) BHH:
 - 3) HBH:
 - 4) HHH;
 - 5) BBB.

1.3. НЕРВ. СИНАПС. МЫШЦА

Выберите один правильный ответ.

- 1. Открытый участок мембраны осевого цилиндра миелинизированного волокна шириной около 1 мкм, в котором миелиновая оболочка прерывается, носит название:
 - 1) терминали аксона;
 - 2) перехвата Ранвье;
 - 3) пресинаптической терминали;
 - 4) аксонного холмика;
 - 5) постсинаптической мембраны.
- 2. Изолирующую и трофическую функции в миелинизированном нервном волокне выполняют:
 - 1) нейрофибриллы;
 - 2) миелиновая оболочка;
 - 3) мембрана аксона;
 - 4) микротубулы;
 - 5) перехваты Ранвье.

3. Возбуждение в безмиелиновых нервных волокнах распространяется:

- скачкообразно, перепрыгивая через участки волокна, покрытые миелиновой оболочкой;
- 2) в направлении движения аксоплазмы;
- непрерывно вдоль всей мембраны от возбужденного участка к расположенному рядом невозбужденному участку;
- непрерывно вдоль всей мембраны от невозбужденного участка к возбужденному;
- 5) в направлении против движения аксоплазмы.

4. Возбуждение в миелинизированных нервных волокнах распространяется:

- непрерывно вдоль всей мембраны от возбужденного участка к невозбужденному;
- 2) электротонически и в обе стороны от места возникновения;
- 3) в направлении движения аксоплазмы;
- 4) скачкообразно, перепрыгивая через участки волокна, покрытые миелиновой оболочкой;
- 5) в направлении против движения аксоплазмы.

5. При длительном раздражении нерва нервно-мышечного препарата утомление наступает в первую очередь:

- 1) в нервно-мышечных синапсах;
- 2) мышце;
- 3) эфферентных нервных волокнах;
- 4) телах нервных клеток;
- 5) дендритах нервных клеток.

6. Медиатором в нервно-мышечном синапсе скелетных мышц человека является:

- 1) ацетилхолин;
- 2) норадреналин;
- ΓΑΜΚ;
- 4) адреналин;
- 5) глутамат.

7. Структурное образование, обеспечивающее передачу возбуждения с одной клетки на другую, называется:

- 1) нейрофибриллами;
- 2) аксонным холмиком;
- 3) синапсом;
- 4) перехватом Ранвье;
- 5) миофибриллами.

8. Мембрана аксона нервной клетки, покрывающая нервное окончание, называется:

- 1) постсинаптической;
- 2) пресинаптической;
- 3) синаптической щелью;
- 4) субсинаптической;
- 5) шванновской оболочкой.

9. На постсинаптической мембране нервно-мышечного синапса возникает потенциал:

- 1) тормозящий постсинаптический;
- 2) электротонический;
- 3) концевой пластинки;
- 4) генераторный;
- 5) рецепторный.

10. Сокращение мышцы, при котором оба ее конца неподвижно закреплены, называется:

- 1) изометрическим;
- 2) ауксотоническим;
- 3) пессимальным;
- 4) изотоническим;
- 5) оптимальным.

11. Сокращение мышцы, возникающее при раздражении серией импульсов, в которой интервал между импульсами больше длительности одиночного сокращения, называется:

- 1) гладким тетанусом;
- 2) зубчатым тетанусом;
- 3) пессимумом;
- 4) оптимумом;
- 5) одиночным сокращением.

12. Сокращение мышцы в результате раздражения серией сверхпороговых импульсов, каждый из которых действует в фазу расслабления от предыдущего, называется:

- 1) гладким тетанусом;
- 2) зубчатым тетанусом;
- 3) пессимумом;
- 4) одиночным сокращением;
- 5) оптимумом.

13. Из саркоплазматического ретикулума мышечного волокна при возбуждении высвобождаются ионы:

- 1) калия;
- кальция;
- 3) натрия;
- 4) хлора;
- 5) магния.

14. Мотонейрон и иннервируемые им мышечные волокна называются:

- 1) моторным полем мышцы;
- 2) нервным центром мышцы;
- 3) двигательной единицей;
- 4) сенсорным полем мышцы;
- 5) мотонейронным пулом.

15. Кратковременная слабая деполяризация постсинаптической мембраны, вызванная выделением отдельных квантов медиатора, называется постсинаптическим потенциалом:

- 1) возбуждающим;
- 2) миниатюрным;
- 3) концевой пластинки;
- 4) тормозящим;
- 5) возвратным.

16. В основе аккомодации лежат процессы:

- 1) повышения натриевой проводимости;
- 2) понижения калиевой проводимости;
- 3) инактивации калиевой и повышения натриевой проводимости;
- 4) инактивации натриевой проводимости;
- 5) повышения кальциевой проводимости.

17. Сопряжение возбуждения мембраны мышечной клетки с работой сократительного аппарата обеспечивается:

- 1) ионами натрия;
- ATΦ;
- 3) Т-системой и саркоплазматическим ретикулумом;
- 4) саркомерами;
- 5) ионами калия.

18. Отсоединение головки миозина от актиновой нити вызывается:

- 1) ионами кальция;
- 2) ионами натрия;
- 3) свободной АТФ;
- 4) тропонином;
- 5) тропомиозином.

19. Инициация мышечного сокращения осуществляется:

- 1) ионами кальция;
- 2) ATΦ:
- 3) вторичными посредниками;
- 4) ионами натрия;
- 5) ионами калия.

20. Вещество, передающее возбуждение в химических синапсах от пресинаптической к постсинаптической мембране, называется:

- 1) медиатором:
- 2) модулятором;
- 3) ферментом;
- 4) гормоном;
- 5) стимулятором.

21. Свойство гладких мышц, отсутствующее у скелетных мышц, называется:

- 1) возбудимостью;
- 2) проводимостью;
- 3) сократимостью;
- 4) пластичностью;
- 5) эластичностью.

22. Мышечные волокна скелетных мышц иннервируются:

- 1) нейронами симпатической нервной системы;
- 2) нейронами коры головного мозга;
- 3) мотонейронами;
- 4) нейронами парасимпатической нервной системы;
- 5) нейронами метасимпатической нервной системы.

23. К медиаторам пептидной природы относятся:

- 1) гамма-аминомасляная кислота (ГАМК), глицин;
- 2) эндогенные опиоиды, субстанция «Р»;
- 3) ацетилхолин, серотонин;
- 4) норадреналин, дофамин;
- 5) адреналин, гистамин.

24. Синаптические пузырьки (везикулы) содержат:

- 1) медиатор;
- 2) модулятор;
- 3) фермент;
- 4) гормон;
- 5) стимулятор.

25. Хемозависимые каналы постсинаптической мембраны в возбуждающем синапсе проницаемы:

- 1) для натрия;
- для калия;
- 3) для натрия и калия;
- 4) для натрия и кальция;
- 5) для магния.

26. Хемозависимые каналы постсинаптической мембраны в тормозном синапсе проницаемы:

- 1) для натрия;
- 2) для калия или хлора;
- 3) для натрия и калия;
- 4) для натрия и кальция;
- 5) для кальция.

27. На постсинаптической мембране возбуждающего химического синапса возникает потенциал:

- 1) тормозящий постсиноптический потенциал (ТПСП);
- 2) возбуждающий постсиноптический потенциал (ВПСП);
- 3) следовой;
- 4) генераторный;
- 5) действия.

28. ВПСП — это изменение мембранного потенциала в виде:

- 1) деполяризации;
- 2) следового потенциала;
- 3) потенциала действия;
- 4) гиперполяризации;
- 5) реполяризации.

29. ТПСП — это изменение мембранного потенциала в виде:

- 1) деполяризации;
- 2) следового потенциала;
- 3) потенциала действия;
- 4) гиперполяризации;
- 5) реполяризации.

30. Для химических синапсов характерна:

- 1) низкая чувствительность к недостатку O_2 ;
- 2) низкая утомляемость;
- 3) быстрая передача сигнала;
- 4) медленная передача сигнала;
- 5) высокая надежность передачи сигнала.

31. Для электрических синапсов характерна:

- 1) высокая чувствительность к недостатку О,;
- 2) высокая утомляемость;
- 3) медленная передача сигнала;
- 4) синаптическая задержка передачи сигнала;
- 5) высокая надежность передачи сигнала.

32. Переход медиатора в синаптическую щель осуществляется путем:

- 1) эндоцитоза;
- 2) экзоцитоза;
- 3) пиноцитоза;
- 4) диффузии;
- 5) активного транспорта.

33. Действие возбуждающего медиатора на постсинаптическую мембрану заключается в повышении ее проницаемости для ионов:

- кальция:
- 2) магния:
- натрия;
- 4) калия;
- 5) хлора.

34. Участок мембраны, обладающий способностью связываться с медиатором, называется:

- 1) рецептором;
- 2) каналом;
- 3) насосом;
- 4) пресинаптическим;
- 5) базальным.

35. Экзоцитоз медиатора из синаптического окончания происходит под влиянием на везикулярный белок синаптотагмин ионов:

- натрия;
- кальция;
- 3) калия;
- 4) магния;
- хлора.

36. При возбуждении пресинаптической мембраны ионы кальция входят внутрь синаптического окончания через каналы:

- 1) кальциевые хемозависимые;
- 2) кальциевые потенциалзависимые;
- 3) утечки;
- 4) полиселективные хемозависимые;
- 5) полиселективные потенциалзависимые.

37. Большая часть ацетилхолина в пресинаптической области представлена:

- 1) свободным;
- 2) цитоплазматическим неактивным;
- 3) активным везикулярным;
- 4) лабильно связанным неактивным;
- 5) стабильно связанным.

Установите соответствие.

38. Потенциал

постсинаптический:

- а) возбуждающий;
- б) тормозной;
- в) концевой пластинки

представляет собой:

- 1) местную гиперполяризацию постсинаптической мембраны;
- 2) распространяющуюся деполяризацию постсинаптической мембраны;
- 3) местную деполяризацию постсинаптической мембраны;4) местную деполяризацию
- постсинаптической мембраны в нервномышечном синапсе;
- местную деполяризацию пресинаптической мембраны в нервномышечном синапсе.

39. Мышечные волокна:

- а) скелетные:
- б) гладкие

выполняют функции:

- 1) перемещения тела в пространстве;
- 2) поддержания позы;
- 3) обеспечения перистальтики отделов желудочно-кишечного тракта (ЖКТ);
- 4) обеспечения тонуса кровеносных сосудов;
- 5) обеспечения тонуса разгибателей конечностей.

40. Режим сокращения скелетной мышцы:

- а) одиночное сокращение;
- б) зубчатый тетанус;
- в) гладкий тетанус

наблюдается, когда каждый последующий импульс приходит:

- 1) в фазу укорочения мышцы от предыдущего раздражителя;
- 2) в фазу расслабления мышцы от предыдущего раздражителя;
- 3) после окончания сокращения;
- 4) в фазу рефрактерности от предыдущего раздражителя;
- 5) в фазу экзальтации от предыдущего раздражителя.

41. Вид сокращения скелетной мышны:

представляет собой сокращение:

- а) изометрическое;
- 1) без изменения длины волокна;
- б) изотоническое;
- 2) без изменения тонуса (напряжения)
- волокна:
- в) ауксотоническое
- 3) в условиях изменения тонуса и длины
- волокна;
- 4) без изменения тонуса и длины волокна;
- 5) пессимальное тетаническое.

42. Нервные волокна типа:

проводят возбуждение со скоростью:

a) A;

1) 3-18 m/c;

б) В;

2) 70-120 m/c;

в) C

- 3) 0.5-3 M/c; 4) 0.1-0.3 M/c;
- 5) 150–170 m/c.

43. В возбудимых структурах:

продолжительность фазы абсолютной рефрактерности составляет:

- а) нервном волокне;
- 1) 0,05 мс;
- б) мышечной клетке;
- 2) 0,5 мс;3) 5 мс;
- в) миокардиоците
- 4) 270 mc;
- 5) 300 Mc.

Определите, верны или неверны утверждения и какая связь между ними.

- 44. Гладкий тетанус возникает при ритмической стимуляции мышцы с большой частотой, потому что при этом происходит суммация одиночных сокращений:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.
- 45. Гладкий тетанус возникает при большей частоте стимулов, чем зубчатый, потому что амплитуда сокращений при гладком тетанусе выше, чем при зубчатом:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.

46. Гладкий тетанус возникает при большей частоте стимулов, чем зуб	5 -
чатый, потому что при гладком тетанусе каждый импульс приходит в фаз	зy
расслабления от предыдущего:	

- 1) BBH;
- 2) BBB:
- 3) BHH;
- 4) HHH;
- 5) HBH.
- 47. Гладкий тетанус возникает при меньшей частоте стимулов, чем зубчатый, потому что при зубчатом тетанусе каждый последующий импульс приходит в фазу расслабления от предыдущего:
 - 1) BBH;
 - 2) HBH;
 - 3) BBB;
 - 4) HHH;
 - 5) BHH.
- 48. Гладкий тетанус возникает при меньшей частоте стимулов, чем зубчатый, потому что при зубчатом тетанусе каждый последующий импульс приходит в фазу укорочения от предыдущего:
 - 1) BBH;
 - 2) HHH;
 - 3) HBH;
 - 4) BBB;
 - 5) BHH.
- 49. Оптимум сокращения мышцы возникает при ритмической стимуляции с большой частотой, потому что при этом каждое последующее раздражение попадает в фазу экзальтации от предыдущего:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) BBB;
 - 5) HHH.
- 50. Оптимум сокращения мышцы возникает при ритмической стимуляции с большой частотой, потому что при зубчатом тетанусе каждый последующий импульс приходит в фазу расслабления от предыдущего:
 - 1) BBB;
 - 2) BHH;
 - 3) BBH;
 - 4) HHH;
 - 5) HBH.

- 51. Оптимум сокращения мышцы возникает при ритмической стимуляции с большой частотой, потому что при гладком тетанусе каждый последующий импульс приходит в фазу укорочения от предыдущего:
 - 1) BHH;
 - 2) BBB:
 - 3) HBH;
 - 4) HHH:
 - 5) BBH.
- 52. Пессимум сокращения мышцы возникает при очень большой частоте раздражения, потому что при такой частоте каждый последующий импульс приходит в рефрактерные фазы от предыдущего:
 - 1) BBH;
 - 2) BHH:
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.
- 53. Изотоническое сокращение мышцы происходит без изменения длины волокна, потому что в этих условиях тонус мышцы остается постоянным:
 - 1) BBH:
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.
- 54. Изометрическое сокращение мышцы происходит без изменения длины волокна, потому что в этих условиях тонус мышцы остается постоянным:
 - 1) BBH;
 - 2) BHH;
 - 3) HBH;
 - 4) HHH;
 - 5) BBB.