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Chapter 1

INTRODUCTION
TO MATHEMATICAL ANALYSIS

1.1. FUNCTIONS

14.1. Definition of function, numerical intervals
and neighborhood of points

One of the basic mathematical concepts is the concept of a function,
which establishes the relationship between the elements of two sets.

Definition. Let X, Y be some sets, whose elements are some numbers.
If each number x € X is assigned by some law or rule f the corresponding
number y € Y, then they establish that, on the set of X, there is a numeric
function f, and write this functional dependence with the formula y = f (x) or,
more clearly, in the form of the following diagram:

x—L oy (1.1)

The variable x is called a independent variable, by other words, an argu-
ment, and the variable y is called an dependent variable (on x), by other words,
a function.

The set of X — a range of the argument variation — is called the domain of
the function (DOF). The set of Y, containing all the values that y takes, is
called the domain of function change.

Further, the sets of X and Y are often finite or infinite intervals.

Finite intervals:

» open interval, by other words, simply interval (a; b) is a set of real num-

bers, satisfying the inequalities of @ < x < b, by other words, (a; b) <
(a < x < b), where < is the equivalence sign;

» closed interval (by other words, a segment) [a; b]: [a; b] < (a < x < b);

» half-open intervals (a; b] and [a; b): (a; b] © (e <x < b)and [a; b) = (a < x< D)

respectively.
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0 Xy — € X x,te X

Fig. 1.1. e-Neighborhood of a point x,

Infinite intervals:

» (—o0, +o0) = R is the set of all real numbers, i.e. R < (—o0 < x < +o0);

analogously, (a; +o0) < (a < x < +o0) etc.

Numbers a, b are called respectively left and right ends of these intervals.

Symbols of —oo and +cc are not numbers, but express the process of in-
finite movement of the numeric axis points to the left and to the right from
the origin 0.

Let x, be any real number (a point on the number axis). A neighborhood of
point x is any interval (a; b), containing point x,, interval (x, — €; x, + €),
where € > 0, symmetrical about Xx,, is called e-neighborhood of the point x,,
(Fig. 1.1).

If x e (x, — €; x, + €), the inequalities are true as follows:
x0—£<x<x0+8,
the latter is equivalent to
| x — x| <e.

The particular value of function f (x) when x = a, can be found by
substituting a instead of the argument: f (a). For all that, the a can be
either an alphanumeric expression or some function, e.g. ¢@(f). In the
last case, f (@(#)) will be a combined function, which we will meet in Sec-
tion 1.1.3.

Example 1. Find domain and range of the function
y=+1- x2.
Solution. The domain of this function consists of all x, for which it makes
sense. Thus, X = {|x| < 1} < [-1; 1], Y=1[0; 1], i.e. [-1; 1]%[0; 1].

Example 2. Find the domain and range of the function

oy
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Solution. In this case, the independent variable n takes integer positive
valuesn ¢ N=1{I1, 2, ...}, therefore, y is a function of a natural argument and

11 1Y
is calculated by the given formula ¥ = {—, — s (—j , }, N%Y.

2°4 2
Example 3. If ¢ = 0.1, construct e-neigh- /—\
borhood of the point x, = 2. | y | -
Solution. Under the definition, e-neigh- ;| 9 2 21 x

borhood of the point x, = 2 will be inter-
val|x—2/<0.1,ie. 0.1 <x—-2<0.1=
= 1.9<x< 2.1 (Fig. 1.2).

Fig. 1.2. Interval [x — 2| < 0.1

Self-study work
1. Construct intervals of change for the variable x, satisfying the inequa-
lities:
D x| <4 2) x2<9
3) [x—4|<1; 4) —1<x-3<K2
5) x2>9; 6) (x—2)2<4.

2. Find the domain of function:

1) y=vx+2; 2) y=v9-x%;
3) y=vé4x-x*; 4) y=—x+V4+x;
5) y:arcsinxT_l; 6) y=-+2sinx;

2
7) y=—x—“162_x; 8) y=vx+1-3—x.

3. Calculate function values at the points given:

) f)=x*-x+1; f(Q2), fla+l);

—3 (3) (1) 1
L2J LxJ (P(x)

3 F =i F(b)—F(a)’ F[amj_F[a—h]_

2)  ox)=

b-a 2 2
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1.1.2. Some properties of functions and their graphs

Let function f: X — Ybe given. The rule for finding y, knowing x, can be
defined by the function graph.

Definition. The function graph in a rectangular Cartesian coordinate system
is a set of all points, whose abscissas are the values of the argument, and ordi-
nates are the corresponding values of the function.

Example 1. The y = x? function graph is the parabola, which axis of sym-
metry coincides with the positive semi-axis of ordinates, and the vertex does
with the origin of the coordinates system (Fig. 1.3).

Often, graphs are automatically drawn by self-writing devices or displayed
on a monitor screen. The advantage of this method is clearness, the disadvan-
tage is inexactness.

A function can also be defined using tables or formulas (analytically). The
tabular method is used practically when processing results of observations of
the approximate function values. The analytical method is most convenient for
the complete curve sketching using mathematical analysis methods.

Let us introduce the basic characteristics of a function: monotonicity,
boundedness, a property of being even (odd), periodicity.

Definition. A function is called increasing (decreasing) on an interval, if the
larger value of the argument from this interval corresponds to the larger
(smaller) value of the function.

The graph of a function increasing on an interval (a; b), if it is viewed from
the left to right rises (Fig. 1.4, a), and for a decreasing function the graph goes
down (Fig. 1.4, b).

Definition. The interval of the indepen-

V| dent variable, which function increases (de-

creases) on, is called the interval of increase

(decrease). Both intervals of increase and

decrease are called monotonicity intervals of

a function, and the function on these inter-
vals is called a monotonic function.

Definition. The value of an argument
| , at which function becomes zero, is called
! ! zero of a function.

—1 0 X If function is defined by the formula

y =f(x), then zero (or zeros) of the func-

tion can be found by solving the equation
Fig. 1.3. Graph of the function y = x2 f(x)=0.
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y | y |

[y l :
| b !

X . ! Xy X -

a i 0 / X, X a \ i X

| £60) b
S&) £x) '
X, <Xy = f(x)) <f(xy) X <Xy = f(x)) > f(x,)

a b

Fig. 1.4. Graphs: a is a function, increasing on an interval (a; b); b is a function,
decreasing on an interval (a; b)

When the definition is graphical, zeros of the function are the points where
the graph is crossed by the x-axis.

Example 2. Find zeroes of function y = 2x + 1.
Solution.

2x+1:O:>x:—% (Fig. 1.5).

Definition. A function is called even if the value of a function does not
change for changing the sign of an allowed value of the argument. A function
is called odd if changing the sign of the allowed value of the argument changes
the sign of the function value.

So, if the function f(x) is even, then for  Root of an equation
all x of its domain, the equality f (—x) = 2y +1=0 ¥
= f (x) should be true, as it happens, e.g.,
when f (x) = x2, and if £ (x) is odd, then
f (=x) = —f (x) is true for any x of the
domain of the function, like, e.g., in the 1/
case of £ (x) = x°.

Notice, that both even and odd func- 1
tions are without fail defined in the do- 2
main, which is symmetrical about the
origin of the coordinates system. Fig. 1.5. Graph of the functiony =2x+ 1
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At the same time, the graph of an even function is symmetrical about the
ordinate axis (similarly in Fig. 1.3), and the function graph of an odd function
is symmetrical about the origin of the coordinates system (as in Fig. 1.6).

Notice, that not all functions can be even or odd. Such functions (neither
odd, nor even ones) we will call general functions.

Definition. Function f (x), defined on the set of X, is called bounded on this set,
if there is such a number M > 0, that inequality |  (x)| < M is true for all x € X.

A graph of the bounded function is located between straight lines y = M
and y = —M (Fig. 1.7).

Definition. Function f (x) is called periodic, if there is such a positive num-
ber a, that f (x + a) = f (x) = f (x — a) for any x from the DOF (points x,
x + a, x — a belonging to the domain of a function). At the same time, the smal-
lest positive number a with such a property (if any) is called a function period.

A periodic function graph is obtained by repeating the part of the graph,
corresponding to the interval of the abscissa axis, which is equal in length to
the function period.

An example of a periodic function is the function y = cos x, defined on the
real axis, whose period is 25t (Fig. 1.8).

Y 1 y=M

NN
/0 Y N

Fig. 1.6. Graph of the function y = x3 Fig. 1.7. Graph of the function of the
bounded function

Y i1 y = COsXx
TN T AT T |
| |
:\ — / R - :
-2n 3. i ' n i 3n 2n x
Ty I 2 2 I 2

Fig. 1.8. Graph of the function y = cos x
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Thus, a shift of the graph of a periodic function along the abscissa axis by
an interval, whose length is a multiple of a period, does not change this graph.
In particular, the domain of a periodic function is not bounded.

Self-study work
1. Indicate, which of the following functions are even or odd:
1 smx; 2) a —1;
X a* +1
3) a* +L; 4) a* —L;
a® a*

5) xsin?zx —x3;  6) x+x%

tanx
7) |xl; —
sin2x
2. Find the function zeroes:
1) y=ax+b; ) y=x*+px+gq;
) y=x*+pl+gq 4) y=2log,, (x+ 1);

5) y=a* —a?(a>0); 6) y=2sinx— 1;
7) y=tanx + 1.
3. Find function period:

cotx

1) y=tan2x; 2) y:sini; 3) y= .
2 cos2x

4. Using properties of the odd and even function graphs and the results of
Section 1.1.2, construct the following function graphs:

D y=|x|; 2) y=—x+|[x];

Hy=—|x-2]| 4) y=x—4+|x—-2]|,xe[-2; 5],
5) y=log, (x +2); 6) y=27%

7y y=x*+2x+2; 8) y=—x2+4x.

1.1.3. Composite function. Inverse function

Definition. Composite function (Fig. 1.9) is a function, whose argument is
also a function, i.e. F (x) =f(¢p(x)), by other words, in the form of a diagram,
similarly to the formula (1.1).

In other words, in order to calculate the value at point x of the composite func-
tion fip(x)), consisted of functions fand ¢, we should firstly find the particular
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F value u = @(x) of inner function ¢, and
then substitute it as an argument in the

outer function f.
In this case, the domain of function

¥ 0] f v F (x) should be selected so that the inter-
v mediate set U, on the one hand, is the
Fig. 1.9. Composite function range of function @(x), and, on the other

hand, is the domain of function f ().

Example 1. Consider composite function y = log, (1 — x2). In this case,
y=f(u)=log,,u, whileu=@(x) =1— x2. The domain of the function is y is
interval (—1, 1), in which both function ¢ (x) and function f (u)|Mp  Mmake

X

sense.

Let us consider a function with domain X and range Y. Let us assume, that
each value y € Y corresponds to one definite point x € X, as such y = f (x).
Then, there exists a function @: ¥ — X, which translates any y € Y'to x € X,
that meets the property y = f (x) mentioned above.

Functions f and ¢ with the properties above-cited are called reciprocal,
and function @ is called the inverse of f. Having given the fact, that symbol x,
as a rule, corresponds to an independent variable, the format y = @(x) is as a
rule used instead of x = @(y).

From the definition of inverse function it follows, that any strictly monotonic
function has an inverse one.

There is a simple relationship between function y = f (x) and y = ¢ (x)
graphs: the graph of inverse function y = @ (x) is symmetrical to the graph of
function y =f(x) given about the bisector of the angles formed by quadrants |
and III.

Notice, that reciprocal functions fand ¢ meet the relation given below and
can be calculated as follows:

f(@(x) =o(f(x) =x. (1.2)

Example 2. Let y = £ (x) = x3. Then f (¢(x)) = ¢3(x) and the equality (1.2)
gives @3(x) = x, or @(x) = x1/3, which, however, follows easily from the rela-
tion y = x3 (Fig. 1.10) directly.

It is important to keep in mind that function f (x), increasing or decreasing
on set X, has an inverse function known to be (the definition of increasing and
decreasing functions is given in Section 1.1.2).
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Fig. 1.10. Graphs of reciprocal functions y = x3 and y= x1/3

Otherwise, the uniqueness of the correspondence between X and Y'is vio-
lated, and the inverse function does not exist. However, as a rule, domain X
can be divided into intervals, where function f(x) increase or decrease, and on
each of them the inverse function can be defined.

Example 3. Let y = x2. Then X = (—oo; o), and Y = [0; +o0). Thus,
no one-to-one correspondence between X and Y (each y # 0 is associated
with two x values, differing in signs), and, therefore, no inverse function
(Fig. 1.11) too.

If X is divided into (—oo; 0] and [0; +o0), then on each half-line, there is
one-to-one dependence y = x2. Therefore, on ray (—oo; 0], function y = x?

has inverse function y=—+/x, and on ray [0; +o°) the inverse function of it is
one y= «/; )

Example 4. Let function y with independent variables x is expressed by
linear dependence 3x + 2y — 6 = 0. Find the inverse function and construct
graphs of direct and inverse functions.
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Fig. 1.11. Example of a function, which  Fig. 1.12. Graphs of the reciprocal linear
does not have a reciprocal function functions

Solution. To find the inverse function in a common coordinate system with
the direct function, it is sufficient to exchange x and y in the corresponding
equation.

Thus, in our example, the inverse relationship is expressed by relation
3y + 2x — 6 = 0 and is also linear.

Constructing the graphs (Fig. 1.12), it was taken into account that a straight
line is uniquely defined by any pair of different points lying on it. In particu-
lar, the straight line 3x + 2y — 6 = 0 is defined by points (0; 3) and (2; 0).

Note, that in accordance with properties of reciprocal functions, the
straight lines in Fig. 1.12 are symmetrical about the bisector of the angles
formed by quadrants I and III.

1.1.4. Elementary functions

Definition. The basic elementary functions are the following:

1) power function: y = x”, when # is a real number, x > 0 (in some cases,
particularly, with natural #, the power function is defined on the whole
real axis);

2) exponential function: y = a*, where a > 0, a # 1, and X=R;

3) logarithmic function: y = log x, when a logarithm base is a > 0, a # 1,
and X = (0; +o0);

4) trigonometric functions y = sin x, y = cos x, y = tan x and y = cotan Xx;
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5) inverse trigonometric functions: y = arcsin x, y = arccos x, y = arctan x
and y = arccotan x.

The set of elementary functions includes all the basic elementary functions

and constants, as well as all the functions derived from them using four arith-

metic operations and the operation of taking a function from a function ap-

plied sequentially a finite number of times.
4

[ 2x
E.g., the functions y = log,, (x + 1+ x? ) , V= arctanl—2 and y =tanx —/x
-Xx

are elementary. The function

x, x<I
y:
x2, x>1

is not elementary.

The domain of an elementary function is all the values of the argument for
which this function makes sense.

E.g., the domain of function y =vx* —1 isset X=(—o0<x<—1 U 1< x < +o0).
In this case, the symbol U means the union of the intervals.

Let us consider power and exponential functions.

Power function y = x" with integer # is defined on the whole real axis; it is
even, if n is even, and it is odd, if n is odd (see Fig. 1.2 and 1.5).

When # is arbitrary, the function is considered in the area x > 0. If n > 0,
then the function graphs y = x” increase from zero to infinity on the interval
(0; +o0), pass through points (0; 0) and (1; 1) and are divided by straight line
y = x into curves, that are convex downward when » > 1 and convex upward
if 0 <n <1 (Fig. 1.13, a).

g
If n < 0, then function y=x" :[—j decreases from infinity to zero
(Fig. 1.13, b). X |

The inverse function to function y = x", x > 0, is the one y = X",
We are reminding, that

(x“ )b —x%; (1.3)
.ﬁzdg (1.4)

(n and m are positive integers) and, particularly, (1/; =x".
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a b
Fig. 1.13. Graph of the function y = x": aisforn > 0; bis forn <0

Y y=d,a>1 v i

e / y=log,x

Fig. 1.14. Exponential and logarithmic functions graphs: a is fora > 0; b is fora <0

Exponential function y = ¥, —oo < x < oo, and logarithmic one y = log, x,
x > 0, when parameter a is the same, are reciprocal. Their graphs are sym-
metrical about the bisector of the angles formed by the quadrants I and III
(Fig. 1.14).

An exponential function is always positive, so its graph is located above the
axis Ox. In addition, since a = 1, it passes through the point (0; 1). For a > 1,
an exponential function increases from zero to infinity, and for a < 1 it dec-
reases from infinity to zero. Notice, that graph of an exponential function
with base a is symmetrical about axis Oy to the exponential function graph

with base 1 , which follows from the equality [l) =a* (Fig. 1.15).
a a
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We are reminding, that function
y =¢€ (e = 2.718...) is called exponen-
tial, and its graph is called an exponential
curve; logarithms with base e are find as
log x and called natural one. Logarithms
with base 10 are designated by log,,x and
called as decimal one. Thus, log x = log x,
log,,x = log x.

Taking into account that logarithmic
and exponential functions are reciprocal,
we have (see (1.2)) Fig. 1.15. Graph of the function

y=2andy=27%
=X, (1.5)

lo;
log,a*=x, a™*

where the first equality is true for any x and the other one for x > 0.
In particular, x = €!°#¥ and, therefore (see (1.3)),

X =eMogx x> (1.6)

(it is the representation of power function with exponential one).
The following formula is true

log x= , (1.7)

i.e., logarithms of numbers with different bases (a and b, respectively) are
proportional to each other with a proportionality coefficient (fransition mo-

dule)

=log, b.
log, a

Example 1. Express log,x through log , x and log x.
Solution.

0g,, X
£10 5= log,10-log,, x,

0819

logx
log, x =—=—=1og, e-logx.
2, log2 g, e-log

Example 2. Write function y = 2% as an exponential function with base 10.

Solution. 2" =10"%0 2 —10"802%
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1.1.5. Trigonometric functions

First, let us remind that, in mathematical analysis, the argument of trigo-
nometric functions is always taken a radian arc or angle measure, i.e. a num-
ber equal to the ratio of the length of this arc to the radius of a circle. In
this way,

180
—Q

(o]

T or a°= (1.8)

rad

where a° is a degree measure, and a., is a radian measure of the angle. Par-
ticularly,

T o450, T o600, 2e 300, 2 900 etc.
4 3 6 2

Trigonometric functions are periodic: sin x and cos x have the period of 27t
(Fig. 1.16), at the same time, tan x and cotan x have the period of i (Fig. 1.17).

y
1
T g ST e — — —————————— —
// \ : // \ : Yy = Ccosx
/ \ / \ /
! \I ./ \l / -
3n \ —1 /I_T (0] \ T n / 3n
-—— \ I /17 T /1 == X
2 N 7| \2 | / 2
_____________ ol N N S P s
-1 y = sinx

Fig. 1.16. Graph of the function y = sin x and y = cos x

Vi

a3
o a

Fig. 1.17. Graph of the function y = cotan x
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A cosine graph differs from the sine graph by the shift to the left along the

axis Ox by g, because cosx = sin(x +%) (see Section 1.1.2).

Functions sin x, tan x and cotan x are odd, though function cos x is even.
Finally, sin x and cos x are defined for any x, tan x — for all x, except for the

points such as (2k+1)§, where k is any integer, and cotan x is defined for

any x, except the points such as the kind k.
We are reminding, that

. [T . T
COSX = 51nE§J_rx]; sinx = COS(E_XJ;

sin? x +cos® x = 1; sin2x=2sinxcosx;

2 2 2 2 (1.9)
cos2x =cos” x—sin“ x =1-2sin“ x =2cos” x —1;
sinx 2tanx
tanx = ; tan2x=————;
cosXx l1—tan” x

COsX b4
cotx=——; cotx=tan| ——x |.
sinx 2

1.1.6. Inverse trigonometric functions

Since trigonometric functions are periodic, each value of the function cor-
responds to an infinite number of argument values. Thus, no one-to-one cor-
respondence between x and y, and, therefore, a single-valued inverse function
cannot be defined.

To solve the problem of finding x by y, if y = sin x , they do the following.

Function y = sin x on the interval —mt/2 < x < 7/2 increase (Fig. 1.18) and,
therefore, has an inverse function, find by y = arcsin x.

Taking in account that the graph of the inverse function is symmetrical to
the graph of a direct function about the bisector of the angle formed by quad-
rants I and I1 , we can find the graph of function arcsin x.

Domain X of the function y = arcsin x is segment [—1; 1], and the range
of Yis segment [—m/2; m/2], i.e.,

B EALLLINEY L
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y = arcsinx

— N3

y =sinx

o a

o3

Fig. 1.18. Graph of the function y = arcsin x

In addition, y = arcsin x is an odd and increasing function.

The value of the function arcsin x is the radian measure of the angle, the
sine of which is equal to the value given of the independent variable x; at the
same time, among all the angles satisfying this condition, only the angle of
the segment [—m/2; ;t/2] is chosen, i.e.

y=arcsinx < siny =x;|y| < /2. (1.10)

All values of y, which satisfy the equation sin y = x, are found by the
formula

y=mnk+ (—1)*arcsinx; k=0, £1, £2, ... (1.11)
E.g., the solution of the equation siny:%, |y | < m/2,is arcsin%, ie.

number /6. The general solution of the equation siny = 1 will be numbers

yemk+ (¢ or o —12g, —1dg B 20 oL
6 6 6 6 6 6
The function, which is inverse of y = cos x, is defined similarly. Then
we have

[_1, l:| arccosx I:O’ Tc:'



1.1. Functions 27

or y | 1
y=arccosx<cosy=x;0<y <.

Function y = arccos x (Fig. 1.19) and
satisfies the equality of

arccos(—x) = qt —arccosx.  (L.12)

The general solution of equation
cosy =x, | x| < 1, has the form

y = 2mk % arccosx. (1.13)

. . Fig. 1.19. Graph of the function
Notice the formulas: J = arccos x

sin(arccos x) = cos(arcsin x) =1 —x?;
. - (1.14)
arcsin x + arccosx = >

Function y = arctan x is defined on the whole real axis; the range of the
function is the open interval (—m/2; 7t/2), i.e.
t
R— 5[ ny2; 7/2]),
This function is increasing and odd (Fig. 1.20).
The numbers of the form
y =gk + arctan x. (1.15)

satisfy the equation tan y = x.
Analogously, function y = arctan x is defined on the whole real axis and

takes values on interval (0; ). It decreases (Fig. 1.21) and satisfied to equality
arccot(—x) = ; — arccot x. (1.16)

Y
2 Puc. 1.21. Graph of the function
Fig. 1.20. Graph of the function y = arccotan x

y =arctan x
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The general solution of equation cotan y = x has the form of
y = mk + arccot x. (1.17)

Notice the formulas:

1
tan(arccot x) = cot(arctanx) =—;
X
i
arctanx+arccotx:E; (1.18)

1 1
arctan x =arccot—; arccotx =arctan—.
x x

1.2. LIMITS
1.21. Limit of function

The theory of limits is of fundamental importance in mathematical analy-
sis. With its help, such properties of a function as continuity, differentiability,
integrability etc. are determined. 1

Let us consider an example. Let the function be given by f(x)=

x-1"
defined for any x, except of x = 1. Let’s examine the behavior of this
function x, when values x that do not differ from 1 much. To do this, we
will make a table of function values on the interval that we are interesting in
(Table 1.1).

We see that the closer x approaches 1, the closer f (x) values are to 2. In
such cases, the number 2 is said to be the limit of function f (x) for x, tending
to 1 (or more briefly: f(x) > 2 forx — 1).

We can now give a strict definition of a function limit.

Definition. Let function f'(x) is defined in some neighborhood of point x,),
except, maybe, point x, itself. The number b is called the function limit
in point x, (or when x — x,), if for any positive &, however small it is,
the inequality | f(x) — b | < € is true for all x # x,, of a certain neighborhood of
the point x;,.

Table 1.1

X 0.97 0.98 0.99 1.01 1.02
[ (x) 1.97 1.98 1.99 2.01 2.02
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y=fx
bt+tep--———--————————————— e f
|
| 2¢e
hfpr--——m-—-——— |
| |
| |
| |
| |
b—¢g - ——- To———- I———————=
| | !
| | !
| | !
| | :
l : ! .
0 x,—0 Xy x,t 8 X

Fig. 1.22. Geometrical meaning of the function limit at point x;

It is written as follows: lim f(x)=b.
X*)xo

Geometrical meaning of this definition: for any e-neighborhood of point

b (Fig. 1.22) there exists a certain neighborhood of point x; (e.g., d-neigh-
borhood), such that for all x # x,, of that neighborhood the corresponding
points of the graph of f (x) locates inside a range of 2e wide, limited by
straight linesy=b+¢,y=5b —¢.

This definition does not specify how x approaches x: from the left, from
the right, or oscillation about x,. But sometimes it is essential.

Definition. Number b, is called function y = f (x) limit from the left at
point x, if f (x) — b;, when x — X, being less than x,,.

It is written as follows: lim f(x)=5,.
x—>x,-0

A function limit from the right is defined and written similarly:

lim f(x)=b,, if f(x) = b,, when x — X, being more than x,,.
x—>x,+0

Left and right function limits are called one-sided (Fig. 1.23). Obviously,
if there exists lim f(x)=b, then both one-sided limits also exist and are
equal to b. =%

The converse is also true: if there exists one-sided limits, both equal to b,
then lim f(x)=b.

XX,
If oneo—sided limits are not equal to each other (b, # b,), then lim f(x)

does not exist. =%
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y i y=fx) If the function y = f (x) is defined on
| interval (a; +o0), then the function limit
A | can be defined for x — +oo.
-~ 1

Definition. Number b is called function
limit when x — +oo (i.e. lim f(x)=b), if
X—>+00

|
:
|
by ﬂ for whatever small € > 0 and any sufficient-
| ly large x inequality | f (x) — b | < € is true.
! - In Fig. 1.24, function values f (x) for all
X0 X x> Eare inside the e-neighborhood of point b.

The function limit for x — —oo is de-
fined similarly.
If function f (x) limits for x — +oo and
x — —oo exist and are equal, e.g., to 4, then they say, that f (x) has limit 4 or
x — oo, and they write simply lim f(x)= A.
X—>00

Fig. 1.23. Illustration to the defini-
tion of one-sided limits

In definitions of a function limits given before, the limits are assumed to
be finite. If function f (x) increases or decreases infinitely when x — x,,, the
limit of f (x) is said to be equal to infinity (lim f(x)=0).

x—)xo
Among functions, that have limits (at a certain point or o), a class of
functions, which have a limit equal to 0, is selected. Such functions are called
infinitely small ones (infinitesimals) and are find by letters a, (3, 'y etc.

Fig. 1.24. Function limit when x — +o
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The concept of equivalence of infinitesimals is often used in calculating
limits.

Definition. Let a (x) and 8 (x) be infinitely small functions. If lim w =1,
then ax) and B(x) are called equivalent ones (when x — x,). *7% B(x)

1.2.2. Basic theorems on limits

This section is devoted to the basic properties of function limits. Such
rules give us a possibility to calculate limits of functions defined by algebraic
operations on a variable. In the theorem, which will be given further, func-
tions f (x), g (x) are assumed to have a common domain containing the point
Xy, and have finite limits at this point.

Theorem 1.1. A limit of the sum of two functions is equal to the sum of
their limits.

lim (f(x)+ g(x)) = lim f(x)+ lim g(x).

X—)XO
Theorem 1.2. The limit of the product of two functions is equal to the
product of their limits.
lim (f(x)-g(x)): lim f(x)- lim g(x).
X*)XO X*)XO X*)XO
Corollary. A constant multiplier can be taken outside of the limit.
lim (¢f (x))=c¢ lim f(x).
X—)XO X—)XO

Theorem 1.3. The limit of the ratio of two functions is equal to the ratio of
the limits of these functions if the limit of the denominator is different from 0.

lim f(x)

fim L&) %’
on g(x)  lim g(x)

X=X,

Theorem 1.4. The limit of the positive function is not negative.
These statements are also true when x tends to oo,

1.2.3. Special limits

If for applying basic theorems about function limits there are the expressions

of the following forms: m E} [0—c0], [0-0], [1‘*’}, [0°], |:000:|



32 Chapter 1. Introduction to mathematical analysis

(which are called indeterminate forms) then special methods are used to obtain
the answer (so-called evaluating the indeterminate forms).
The following limits are used to solve the examples:

lim 20X (1.19)
x—0 X
lim (1+lj =lim(1+a)/* =e=2.71828..., (1.20)
X0 X a—0

which are called the first and second remarkable limits respectively.

We are reminding (see Section 1.1.4) that the number e is the base of a
natural logarithm.

Calculating limits, it is also useful to keep in mind the equations, which
follow from (1.19) and (1.20):

lim 1—cosx _ l; lim log(1+x) it
x—0 X2 2 x—0 X

Tl loga (a>0) 1imEFD =1,
x—0

(1.21)

lim
x—=0 X

X
1.2.4. Examples of finding some limits
Example 1. Find 1in13(x2 —Tx+4).

Solution. Applying the theorems on limits (Theorem 1.1) and replacing x in
the analytical expression with its limit value, we obtain

lim(x* —7x+4)=limx> - 7limx+4=9-21+4=-8.
x—3 x—3 x—3

2
Example 2. Find lim—> -9 .
x—3 x2 _3x

Solution. Numerator and denominator of the fraction tend to zero when x

tends to 3 (it is usual to say that the indeterminate form of {%} ). We have

lim >
xan —3x

0] x»3 x(x-3)

x?-9 :{O}ZHm(x—3)(x+3).
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Since, in the definition of the function limit, it is mentioned, that for find-
ing the limit of a function, the values of the function at the limit point can be
ignored, then x — 3 # 0. As a result, we can divide numerator by the denomi-

nator and obtain limx—Jr3 = ﬂ =2.
x=3 X 3
Vx+4 -

Example 3. Find lin}) 2 (indeterminate form {%} ).
X—>

X

Solution. Let us multiply numerator and denominator of the fraction by

sum +vx+4+2 (the conjugate). We use a well-known algebraic formula
a? — b2 = (a — b)(a + b). We obtain

lim(x/x+4—2)(\/x+4+2) x+4-4 1 1

>0 x(x+4+2) 0x(x+4+2) 0x1442 4

Example 4. Find lim VBx+7-2x+10
W13 -2

Solution. Numerator and denominator of the fraction should be simulta-
neously multiplied by their conjugate, i.e. by the expression

(indeterminate form {%} ).

(V3x+7 +v2x+10)(Vax + 13 +4x +22).
We obtain

lim V3x+7-~+2x+10 im N3x+7-~2x+10 N
B JAx +13 —x+22 3J4x+13-+x+22

3x+7 +\/2x+10)(\/4x+13 +x+22
3x+7 +\/2x+10)(\/4x+13 +x+22

(Vax+13+4x+22) 5

=1lim =

=33(f3x+7 +42x+10) 12
%x—6

Example 5. Find lim—_l (indeterminate form {%} ).

x—>7 X—

X

)
)

—_~|—~

Solution. Let us use a well-known algebraic formula

(a—b)(@*+ab+b?)=a’—p.
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Let a=3x— 6, b= 1. Therefore, in order to obtain a difference of cubes in

the numerator, we should multiply it by (\3/(x —6)? +3x—-6+ l). After multi-
plying numerator and denominator by this value, we obtain

m 361 x-7 _
=1 =TT ) (-6 + Yx—6+1)
1 11
=lim =—,

x_’7%/(x—6)2 +3fx—641 I+l+l 3

3,2
Example 6. Find lim X7 +xTHS (indeterminate form {2} ).
X0 3% 4y -] o0
Solution. We divide both numerator and denominator by the highest
degree x found in the parts of the fraction, and then pass to the limit cal-

culating:

lim 2+ limiJrlimi
. 2 +x 4S5 2+1/x+5/x3 X0 X0 X x—oxs 2
lim = lim = ==
2 30 ex =l 203/ -1/ s g Ly L3
X—>00 XA)OOxz X‘)O(}x3

since when x — o quantities 1/x, 1/x% u 1/x3 are infinitesimals, i.e. the limits
of these quantities are equal to zero, when x — oo. Now it is possible to apply
the theorem about the quotient limit.

3 2
Example 7. Find lim X 3 (indeterminate form |:oo—oo:| ).
x>0 592 11 15x+1
Solution. We bring the expression on the common denominator, and then
divide numerator and denominator into the highest power of x found in the
fraction.

X—>0

. X 3x2 o 15x* + X —15x% —3x?
lim = lim -
Sx241 15x+1) x> (552 +1)(15x+1)

3 2 _
—lim_ % 3% - lim 1-3/x

- =1/75.
o (s 41 (15w +1) (5+12J(15+1/x)
X
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4 —
Example 8. Find lim ——> —2

e Ix® $3x+2

Solution. We divide the numerator and denominator by the highest degree
of x found in the example, i.e. by x*.

(indeterminate form {2} ).
o0

2

3_~

lim -2 — lim x 35
x»oo\/x8+3x+2 xaoo\/l_‘r 3 4 1

4+
x7 x8

Example 9. Find lim<\/ x> +8x+3— \/ x2 +4x+ 3) (indeterminate form

[

Solution. Multiply and divide the considered expression by its conjugate:

lim (Vx2 +8x+3 —\x? +4x+3) =

X—>+0

= lim (\/x2+8x+3—\/x2+4x+3)(\/x2+8x+3 +\/x2+4x+3):

X0 \/x2+8x+3+\/x2+4x+3
_ lim x? +8x+3-x?—4x-3  lim 4x 3
o 32 1 8x 434 x2 +dx 43 x4 8x 43 +4x? 1 4x 43
4 4

_ lim _2
> 148/ x+3/x2 4144 /x+3/x> 2

sin4x

Example 10. Find 1im0 (indeterminate form {%} ).
x>

X
Solution. We use the first remarkable limit:

. sindx .. sin4x
lim =1lim .
x>0 X y—>0 4x

4=4.

Example 11. Find lim S0 * )= cosx =)
h—0 h

Solution. Using the formula

(indeterminate form {%} ).

GIT—i_B'Sina—_B,

coso—cosP =—2sin 5





