ОГЛАВЛЕНИЕ

Предисловие	10
Список сокращений и условных обозначений	11
Введение	13
Глава 1. Диверсификация пищевого рациона беременной	16
Питание и саплементация. Мифы о еде	18
Прибавка массы тела во время беременности	19
Классификация витаминных препаратов	
Заключение	25
Литература	
Глава 2. Кальций	28
Общая характеристика. Биологическая роль в организме	
человека	28
Пищевые взаимодействия	
Дефицит	32
Особенности метаболизма кальция во время беременности	
и лактации	34
Значение адекватного поступления кальция	
Роль кальция в лечении гипертензивных расстройств	
при беременности	40
Кальций в составе витаминно-минерального комплекса	
Литература	
Глава 3. Магний	50
Общая характеристика. Биологическая роль в организме	
человека	50
Пищевые взаимодействия	
Дефицит	
Пишевые источники	
Применение магния в акушерстве. Эклампсия	
Магний в качестве нутрициальной коррекции	
Артериальная гипертензия у беременных.	
Преждевременные роды	61
Клинико-фармакологические аспекты выбора препаратов,	
содержащих магний	65
Литература	
Глава 4. Железо	
Общая характеристика. Биологическая роль в организме	
человека	69

Пищевые взаимодействия	72
Потребности у беременных и кормящих	
Дефицит железа	
Пищевые источники	
Усилители всасывания негемового железа	
Ингибиторы всасывания негемового железа	
Влияние дефицита железа у беременной женщины на развит	
нервной системы плода и когнитивные функции	
новорожденного	83
Роль дополнительного приема железа беременными	
для профилактики и лечения дефицита железа	85
Литература	
Глава 5. Селен	98
Общая характеристика. Биологическая роль в организме	
человека	
Пищевые взаимодействия. Антиоксидантные взаимодействия	
Селен при беременности	
Селен и преэклампсия	
Источники	
Литература	
Глава 6. Медь	111
Общая характеристика. Биологическая роль в организме	
человека	
Причины дефицита меди у человека и тератогенез	
Роль меди в патогенезе преэклампсии	
Пищевые источники	
Литература	
Глава 7. Йод	130
Общая характеристика. Биологическая роль в организме	
человека	
Пищевые взаимодействия	
Дефицит	
Пищевые источники. Профилактика йододефицита	
Влияние дефицита йода на развитие нервной системы плода	
Йодная профилактика у беременных	
Литература	
Глава 8. Цинк	146
Общая характеристика. Биологическая роль в организме	146
человека	
Пишевые взаимолействия	14/

Физиологические изменения обмена цинка во время	
беременности	148
Дефицит	
Нейробихевиоральное развитие	154
Осложнения беременности и родов	
Биомаркеры цинкового статуса	
Пищевые источники	
Литература	
Глава 9. Фосфор	
Общая характеристика. Биологическая роль в организме	
человека	173
Регуляция: Паратгормон, витамин D и фактор роста	
фибробластов (FGF-23) — эндокринные оси	173
Источники	
Наследственный фосфат-диабет	
Литература	
Глава 10. Хром	
Общая характеристика. Биологическая роль в организме	
человека	181
Возможный механизм действия	
Пищевые взаимодействия	183
Гестационный диабет	
Источники	185
Литература	186
Глава 11. Молибден	
Общая характеристика. Биологическая роль в организме	
человека	189
Пищевые взаимодействия	190
Дефицит	191
Источники	
Литература	194
Глава 12. Витамин С (аскорбиновая кислота)	198
Химическая природа	198
Биологическая роль	198
Дефицит	199
Рекомендуемое суточное потребление	200
Витамин С и беременность	
Природный vs синтетический витамин С. Биодоступность	203
Питература	

6 Оглавление

Глава 13. Тиамин	205
Химическая природа	206
Биологическая роль	206
Дефицит тиамина	207
Источники	212
Гестационный диабет и риск дефицита тиамина	213
Литература	213
Глава 14. Рибофлавин	
Химическая природа	216
Биологическая роль	217
Взаимодействие рибофлавина с микронутриентами	219
Рекомендуемое суточное потребление рибофлавина	222
Источники	223
Рибофлавин в составе витаминно-минерального комплекса.	224
Литература	225
Глава 15. Витамин РР	
Химическая природа	227
Биологическая роль никотиновой кислоты	227
Дефицит никотиновой кислоты	231
Метаболизм триптофана	232
Причины дефицита витамина РР	
Рекомендуемое суточное потребление витамина РР	234
Источники	235
Витамин РР при беременности	236
Литература	237
Глава 16. Пантотеновая кислота (витамин В ₅)	
Химическая природа	240
Биологическая роль	
Дефицит пантотеновой кислоты	241
Рекомендуемое суточное потребление пантотеновой кислоты	242
Источники	
Используемые формы пантотеновой кислоты	244
Пантотеновая кислота во время беременности	
и кормления грудью	244
Литература	
Глава 17. Витамин B ₆ (пиридоксин)	
Химическая природа	
Биологическая роль	
Дефицит пиридоксина	

Оглавление 7

Рекомендуемое суточное потребление пиридоксина	. 249
Профилактика заболеваний	
Источники	
Пиридоксин в составе витаминно-минерального комплекса	
Литература	
Глава 18. Биотин	
Химическая формула биотина	
Биологическая роль биотина в организме	
Дефицит биотина	
Признаки и симптомы недостаточности биотина	
Адекватный уровень потребления биотина	. 262
Биотин в профилактике врожденных дефектов	
Источники биотина	
Бактериальный синтез биотина	.264
Биотин в составе витаминно-минерального комплекса	.264
Литература	
Глава 19. Фолиевая кислота. Метафолин®	
Химическая природа	.266
Метафолин [®] · · · · · · · · · · · · · · · · · · ·	.267
Биологическая роль фолиевой кислоты	. 267
Клинические аспекты проявления дефицита фолиевой кислоты	
Рекомендуемое суточное потребление фолиевой кислоты	
Пищевые источники фолиевой кислоты	
Генетические вариации в метаболизме фолатов	
Профилактика заболеваний	. 275
Роль фолиевой кислоты в профилактике осложнений	
беременности	
Контрацепция и фолиевая кислота	
Фолиевая кислота и гомоцистеин	
Фолиевая кислота в профилактике перинатальной депрессии	
Преимущества и ограничения различных форм фолатов	
Литература	
Глава 20. Витамин В ₁₂	
Химическая природа	
Современные молекулярно-генетические аспекты всасывания	
цианокобаламина	
Биологическая роль	
Дефицит витамина B ₁₂	.289
Алгоритм лабораторной диагностики функционального	
дефицита цианокобаламина	.292

8 Оглавление

Мегалобластная анемия	295
Рекомендуемое суточное потребление витамина В ₁₂	
Гомоцистеин и сердечно-сосудистые заболевания	
Дефекты нервной трубки	
Источники	
Витамин B_{12} в составе витаминно-минерального комплекса .	
Литература	
Глава 21. Витамин А	
Химическая природа	305
Биологическая роль	
Пищевые взаимодействия	
Рекомендуемое суточное потребление витамина А	312
Фармакологические дозы ретиноидов	
Источники	
Пищевые источники	314
Формы витамина A	315
Безопасность во время беременности	316
Литература	316
Глава 22. Витамин D	319
Химическая природа	319
Биологическая роль	320
Физиологические функции в организме	
Механизмы действия	
Дефицит витамина D	
Источники витамина D	327
Побочное действие	328
Витамин D и беременность	329
Витамин D в составе витаминно-минерального комплекса	
Литература	337
Глава 23. Витамин Е	342
Химическая природа	342
Биологическая роль	342
Рекомендуемое суточное потребление витамина Е	
Источники витамина Е	346
Влияние витамина Е на репродуктивное здоровье	347
Литература	
Глава 24. Побочное действие витаминов	
Аскорбиновая кислота (витамин С)	
Тиамин (витамин B_1)	
Рибофлавин (В2)	354

Пиридоксин (витамин B_6)	. 354
Никотиновая кислота (витамин В ₃)	
Никотинамид	
Пантотеновая кислота (витамин B_5)	
Цианокобаламин (витамин B_{12})	
Φ олиевая кислота (витамин B_9)	
Биотин	. 359
Витамин А. Синтетические ретиноиды	
Витамин D	
Витамин Е	
Витамин К	.364
Механизмы тератогенного воздействия лекарственных средств,	
опосредованные через фолаты и витамин А	.365
Глава 25. Роль микронутриентного статуса в формировании	
неспецифического иммунитета как одна из стратегий	
профилактики коронавирусной инфекции, вызванной SARS-CoV-2	
Вирусные инфекции и иммунный статус во время беременности	
Литература	.382
Глава 26. Омега-3 длинноцепочечные полиненасыщенные жирные	
кислоты	
Пищевые источники омега-3	.385
Омега-3-индекс и проблема биодоступности	
эйкозапентаеновой и докозагексаеновой кислот	.387
Целевой омега-3-индекс при беременности	.387
Доказательная медицина и прием омега-3 длинноцепочечных	
полиненасыщенных жирных кислот во время беременности	
Перинатальная депрессия и омега-3	
Отсроченные эффекты на потомство	
Безопасные дозы омега-3	
Заключение	
Литература	
Глава 27. Проблемы безопасности фитотерапии у беременных	
Эндогенные токсичные вещества лекарственных растений	.401
Лекарственные растения, обладающие абортифицирующим	
действием	.402
Исследования безопасности применения препаратов на основе	
лекарственного растительного сырья во время беременности	
Литература	.406
Приложения	. 408
- Предметный указатель	430

ПРИНЦИПЫ ДИВЕРСИФИКАЦИИ ПИЩЕВОГО РАЦИОНА БЕРЕМЕННОЙ

В период преконцепции, беременности и лактации организм женщины нуждается в повышенном потреблении ряда микронутриентов. Профилактика дефицита питательных веществ должна начинаться на этапе прегравидарной подготовки путем формирования здорового пищевого поведения (диверсификация) и приема базовых нутриентов в соответствии с рекомендациями ВОЗ (саплементация) [1].

В организме матери необходимо обеспечить благоприятную преимплантационную среду, условия для ранней дифференциации и начального развития плаценты. Здоровье человека начинает формироваться в утробе матери и во многом обусловлено нутритивным статусом во время беременности. Согласно современной концепции эпигенетики определенные заболевания закладываются внутриутробно путем изменения экспрессии генов [2].

Обеспеченность микронутриентами в период преконцепции и беременности является ключевым фактором для физиологического течения беременности [3] и коррелирует с положительными исходами беременности, оценкой новорожденного по физиологическим шкалам, весом ребенка при рождении, снижением риска перинатальной смертности [4]. Состав грудного молока и его питательная (пищевая) ценность зависят напрямую от микронутриентного статуса матери [5].

Дисбаланс элементно-витаминного гомеостаза играет значимую роль в развитии целого ряда неблагоприятных последствий для организма женщины. Определенные витамины, макро- и микроэлементы, которые относятся к эссенциальным факторам питания, не синтезируются в организме человека, т.е. они должны поступать извне в достаточном количестве [6].

Во время беременности повышается основной обмен, что влечет за собой повышение потребности как в энергии, так и в витаминах и минералах для обеспечения фетоплацентарной системы матери и плода [7]. В ряде случаев причиной формирования дефицита микронутри-

ентов является отсутствие у женщины знаний по построению здорового рациона [8].

Специалистам, работающим с беременными, целесообразно обращать внимание на вопросы питания: информировать о принципах здорового питания; существующих путях оптимизации рациона с включением необходимых фруктов, овощей, жирной морской рыбы, молочных и цельнозерновых продуктов, орехов и семян, бобовых, мяса птицы и красного мяса.

Ведение пищевого дневника беременной является эффективным методом контроля пищевого поведения, позволяет своевременно установить избыточную прибавку в весе, которая является предиктором макросомии плода и соответствующих нарушений обмена веществ. Более 50% случаев рождения крупного ребенка непосредственно связаны с нарушениями углеводного обмена, впервые возникшими во время беременности. Патогенетическая профилактика макросомии плода заключается в поступлении в организм матери достаточного количества всех микронутриентов, которые принимают участие в углеводном обмене: цинка, селена, витаминов группы В, магния, витамина D [8]. Особое значение имеет количество и качество в рационе питания беременной жиров, в том числе омега-3 ПНЖК — эйкозапентаеновой (ЭПК) и докозагексаеновой (ДГК) кислот [9].

В России, как и во многих других странах мира, прослеживается тенденция к ежедневному чрезмерному потреблению высококалорийной пищи, богатой трансжирами и «быстрыми» углеводами, что повышает риск гестационного сахарного диабета и других осложнений беременности, а также оказывает неблагоприятное воздействие на плод [8, 9].

Перинатальная депрессия находится в центре внимания международного медицинского сообщества, так как может иметь серьезные и долгосрочные неблагоприятные последствия. В патогенезе значимым является алиментарный фактор: дефицит фолатов и омега-3 ПНЖК. Дополнительное экзогенное поступление данных микронутриентов приводит к положительной клинической динамике при слабовыраженных симптомах и используется в составе комплексной терапии при выраженных симптомах депрессии. Назначение беременным антидепрессантов является фактором риска для плода. Добавление в комплексную терапию фолатов и омега-3 ПНЖК можно рассматривать как фактор, потенциально представляющий возможность применять более низкую дозу антидепрессантов и соответственно снизить негативное действие на плод, обеспечивая при этом тот же уровень терапевтического эффекта для матери [10].

ПИТАНИЕ И САПЛЕМЕНТАЦИЯ. МИФЫ О ЕДЕ

Благодаря рациональному и сбалансированному питанию часть повышенной потребности беременной в микронутриентах можно компенсировать диетой. Однако на территории нашей страны в связи с географическим положением, исторически сложившейся культурой питания, социально экономическими факторами существует дефицит целого ряда микронутриентов, которые играют важную роль в периконцепциональном периоде.

С географическим местоположением связан дефицит витамина D, йода, омега-3 ПНЖК. В социальных сетях и литературе насаждаются «молочные страхи и мифы», в связи с чем молочные продукты необоснованно исключаются из рациона, что приводит к снижению потребления кальция ниже рекомендованных значений. Распространение мифа об опасности глютена для здоровых женщин, не страдающих целиакией, в итоге приводит к исключению из рациона женщинами репродуктивного возраста целого ряда пищевых источников, содержащих витамины группы В и клетчатку.

Широкое распространение редуцированных диет, снижение употребления качественного мяса и соответственно поступления гемового железа в организм, отсутствие скрининга на латентный дефицит железа путем определения уровня ферритина приводят к тому, что большое количество женщин вступает в беременность с низким уровнем запасов железа.

Тенденция последних лет — увеличение вегетарианского и веганского пищевых ограничений, способствует снижению потребления базовых нутриентов, в том числе необходимых для женского здоровья [11]. Некоторые диеты и стили питания, такие как интервальное голодание (фастинг), кетогенные диеты, повышают риски нарушений обмена веществ и категорически противопоказаны в период беременности.

Эти негативные тенденции усиливаются неблагоприятным экологическим воздействием, курением, чрезмерным употреблением алкоголя. Повышение возраста женщин, планирующих беременность, и беременных также приводит к риску дефицита микронутриентов. Приобретенные с возрастом хронические воспалительные заболевания могут стать причиной нарушения всасывания микронутриентов. Повышенная потребность в витаминах и минералах наблюдается при заболеваниях желудочно-кишечного тракта и печени, длительно протекающих хронических болезнях, при проведении антибактериальной терапии [6].

ПРИБАВКА МАССЫ ТЕЛА ВО ВРЕМЯ БЕРЕМЕННОСТИ

Последствия недостаточного или чрезмерного потребления определенных питательных веществ могут наблюдаться как в краткосрочной перспективе, так и иметь долгосрочные последствия. Недостаточное питание и избыточный гиперкалорийный рацион с большим количеством добавленных сахаров могут привести к необратимым изменениям метаболических путей и, таким образом, повысить риск возникновения заболеваний обмена веществ (нарушения обмена жиров и углеводов, ожирение, инсулинорезистентность и др.) [12].

ОБЩИЕ ПРИНЦИПЫ ФОРМИРОВАНИЯ ПИЩЕВОГО РАЦИОНА ЖЕНЩИНЫ, ПЛАНИРУЮЩЕЙ БЕРЕМЕННОСТЬ, И БЕРЕМЕННОЙ

- Потребление разнообразных продуктов с минимальной промышленной обработкой, а также нерафинированных продуктов в количествах, обеспечивающих адекватный, но не чрезмерный набор веса.
- Саплементация. Ключевыми микронутриентами для физиологической беременности являются йод, фолиевая кислота, кальций, витамин D [13]. FIGO также в качестве ключевого микронутриента указывает витамин B₁₂ [14]. Беременным может быть рекомендован прием омега-3 ПНЖК, так как это снижает риск спонтанных пороков развития и рождения маловесных детей [9, 10]. Беременным группы высокого риска авитаминоза многокомпонентные ВМК рекомендованы на протяжении всей беременности, так как их назначение снижает риск перинатальных осложнений [13].

Основным нормативным документом, который регламентирует поступление в организм эссенциальных микронутриентов на уровне пищевой суточной потребности в РФ, являются методические рекомендации ФГБУН «ФИЦ питания и биотехнологии» «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» от 2015 г., в котором установлены нормы и границы потребления нутриентов для беременных [15]. Помимо этого, основополагающим документом являются рекомендации ВОЗ по нормам дополнительного приема различных нутриентов как в прегравидарном периоде, так и во время беременности.

Обновленные рекомендации ВОЗ поддерживают прием ВМК, содержащих фолаты и железо. На протяжении всей беременности и кормления грудью рекомендован постоянный прием йода [16]. Согласно обновленным клиническим рекомендациям «Нормальная беременность» Министерства здравоохранения РФ от 2020 г., женщинам с физиологическим течением беременности рекомендован прием фолиевой кислоты на протяжении первых 12 нед беременности, йода — на протяжении всей беременности, беременным группы высокого риска гиповитаминоза — витамин D на протяжении всей беременности.

- Важно избегать употребления алкоголя, табака и других вредных веществ.
- Необходимо соблюдать меры безопасности при употреблении пишевых продуктов:
 - режим термообработки (мясо, рыба, яйца полностью приготовленные);
 - исключение из рациона сырой рыбы и мяса;
 - употребление продуктов питания с надлежащим сроком годности;
 - соблюдение правил гигиены (мытье рук, поверхностей для приготовления пищи, разделочных досок, посуды и кухонных принадлежностей, контактирующих с сырым мясом или рыбой, горячей мыльной водой);
 - употребление только пастеризованных молочных продуктов и фруктовых/овощных соков;
 - тщательное мытье фруктов и овощей перед едой;
 - отказ от употребления в пищу пророщенных злаков (маш, пшеница) в связи с наличием риска их бактериальной контаминации.

Поскольку количество дополнительных калорий, необходимых для физиологической беременности, невелико, а потребности в некоторых питательных веществах возрастают существенно, женщинам следует сосредоточиться на увеличении потребления высококачественной, богатой питательными веществами пищи и попытаться ограничить потребление рафинированных калорийных продуктов и напитков.

 Таблица 1.1

 Рекомендуемая потриместровая прибавка в весе при одноплодной беременности в зависимости от исходного индекса массы тела [17]

ИМТ, кг/м²	I триместр, кг	II триместр, кг/нед	III триместр, кг/нед	Общая при- бавка, кг
<18,5 (недостаточный вес)	0,5-2,0	0,5	0,5	12,5—18,0
18,5—24,9 (нормальный вес)	0,5-2,0	0,5	0,5	11,5—16,0
25,0-29,9 (избыточный вес)	0,5-2,0	0,25	0,25	7,0—11,5
≥30,0 (ожирение)	0,5-2,0	0,25	0,25	5,0-9,0

ИМТ перед беременностью и прибавка в весе во время беременности имеют независимое, но кумулятивное влияние на массу тела ребенка при рождении и, возможно, продолжительность гестации. Частота осложнений беременности выше при избыточной и низкой прибавке в весе. В настоящее время выявлена тенденция рождения малых для гестационного возраста детей среди женщин с прибавкой в весе ниже данных, указанных в рекомендациях, основанных на ИМТ. У женщин, с прибавкой в весе выше данных, указанных в рекомендациях, риск рождения младенца с макросомией повышается в 2 раза [18]. Чрезмерная прибавка в весе во время беременности может также привести к увеличению риска детского ожирения и сохранения избыточного веса матери в течение длительного времени после родов [19].

Количество потребляемых калорий является ключевым фактором питания, определяющим поддержание веса в течение беременности. Беременным с нормальным весом и одноплодной беременностью необходимо увеличить суточное потребление калорий на 340 и 450 ккал в день во II и III триместрах соответственно. Для рекомендуемого набора веса нет необходимости увеличивать потребление калорий в I триместре. Потребности в калориях зависят от физической активности, а также от возраста, веса и роста, поэтому рекомендации должны быть индивидуальными [20].

Витаминная и минеральная недостаточность формируется в результате дефицита экзогенного поступления, нарушения всасывания из кишечника, наличия состояний, препятствующих участию в метаболических процессах и способствующих быстрому разрушению микронутриентов в организме. Отличительной чертой многих витаминов является участие в построении коферментов — составной части ферментов, выполняющих роль промежуточных субстратов (переносчиков водорода) и ускоряющих каталитические реакции. Минеральные вещества в организме не синтезируются, являются незаменимыми факторами питания. Макро- и микроэлементы входят в состав структурных элементов клетки и тканей тела, участвуют в процессах обмена между клетками и межклеточной жидкостью, активируют ряд ферментных систем, входят в состав всех биологических жидкостей и обеспечивают жизнедеятельность всех клеток, тканей и органов.

Физиологические процессы не могут протекать без взаимодействия витаминов и минеральных веществ (металлов), так как большинство витаминов являются коферментами, ускоряющими ферментативную реакцию, составляя небелковую часть ферментов, а макро- и микроэлементы наряду с ролью кофакторов могут являться активным центром ферментов [6].

Выбор необходимого ВМК среди существующего разнообразия представляет собой непростую задачу.

КЛАССИФИКАЦИЯ ВИТАМИННЫХ ПРЕПАРАТОВ

- Монокомпонентные:
 - водорастворимые;
 - жирорастворимые.
- Поликомпонентные:
 - комплексы водорастворимых витаминов;
 - комплексы жирорастворимых витаминов;
 - комплексы водо- и жирорастворимых витаминов;
 - витаминные препараты, содержащие макро- и/или микроэлементы:
 - ♦ комплексы витаминов с макроэлементами;
 - ♦ комплексы витаминов с микроэлементами;
 - ♦ комплексы витаминов с макро- и микроэлементами;
 - витаминные препараты с компонентами растительного происхождения.
- Комплексы водо- и жирорастворимых витаминов с компонентами растительного происхождения.
- Комплексы водо- и жирорастворимых витаминов с микроэлементами и компонентами растительного происхождения.
- Фитопрепараты с высоким содержанием витаминов.

Базовые витамины могут входить в состав базового витаминного комплекса, который содержит ключевые микронутриенты, рекомендованные к применению на протяжении всей беременности в дозах на уровне пищевой суточной потребности. На фоне применения базового комплекса возможно использование фортифицированных продуктов питания, саплементация другими комплексами или отдельными компонентами в случае необходимости, а также применение по показаниям терапевтических доз витаминов в виде монотерапии для лечения патологических состояний [9]. Базовые витамины и микроэлементы могут также назначаться раздельно в виде монопрепаратов или биологически активных добавок (БАД).

ВМК, зарегистрированные как *БАДы*, содержат витамины, макрои микроэлементы в дозах, не превышающих рекомендуемую суточную потребность, и могут быть эффективно использованы только для профилактики витаминодефицитных состояний.

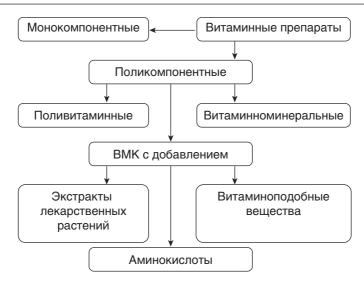


Рис. 1.1. Витаминно-минеральные комплексы

ВМК, зарегистрированные как лекарственные средства, могут содержать лечебные дозы витаминов и использоваться в качестве фармакологически активных веществ для лечения гиповитаминоза и в составе комплексной терапии заболеваний внутренних органов. Выбор должен проводиться с учетом накопленных научных знаний в области клинической фармакологии ВМК и индивидуальных особенностей питания и состояния здоровья.

В группы повышенного риска дефицита микронутриентов включают женщин с многоплодной беременностью; заядлых курильщиц; беременных подростков; полных вегетарианцев (веганов); лиц, злоупотребляющих психоактивными веществами, перенесших бариатрические операции, имеющих заболевания органов ЖКТ и состояния, вызывающие мальабсорбцию (например, болезнь Крона, резекция кишечника); женщин с лактазной недостаточностью [21].

Метаанализ Кокрейна (Haider B.A., 2017, 17 РКИ; 137 791 беременных) показал, что ежедневный пероральный прием ВМК, содержащего фолаты и железо, снижает риск рождения плода с низкой массой тела (<2500 г) и частоту родов на малом сроке гестации, но не оказывает общего влияния на перинатальную и неонатальную смертность [22]. Более поздний метаанализ Кокрейна (Keats E.C., 2019, 20 РКИ; 141 849 беременных), проведенный на основе данных стран с низким и средним уровнем дохода, где дефицит микронутриентов высок, продемонстри-

ровал преимущества применения во время беременности многокомпонентных ВМК в сравнении с приемом железа с фолиевой кислотой или без нее.

Результаты показали, что назначение ВМК с железом и фолиевой кислотой привело к уменьшению доли маловесных новорожденных, снижению частоты преждевременных родов, по сравнению с изолированной дотацией фолатов и железа, которые только профилактировали анемию. При этом статистически значимых результатов по улучшению исходов беременности, снижению частоты врожденных аномалий, материнской смертности, перинатальной смертности в группах приема ВМК, по сравнению с контрольной группой, выявлено не было. Большинство исследований были проведены в странах с низким уровнем дохода, и результаты не могут быть экстраполированы на страны с высоким уровнем дохода [23].

Избыточное поступление витаминов в высоких дозах несет риски, практически сравнимые с их дефицитом, поэтому решение о применении базовых профилактических или многокомпонентных ВМК принимает врач индивидуально на основе оценки особенностей питания женщины (пищевого дневника) и состояния ее здоровья.

Применение многокомпонентных комплексов без показаний «для профилактики» может приводить к снижению биодоступности отдельных микронутриентов за счет нежелательных взаимодействий между компонентами при всасывании, на метаболических путях и в процессе реализации биологических свойств [6].

Клинический протокол МАРС по прегравидарной подготовке [28], соответствующие приказы Роспотребнадзора и Приказ Министерства здравоохранения РФ от 01.11.2012 № 572н «Об утверждении Порядка оказания медицинской помощи по профилю "акушерство и гинекология (за исключением использования вспомогательных репродуктивных технологий)"» (ред. от 12.01.2016) содержат рекомендации по приему беременными микронутриентов [29, 30].

ЗАКЛЮЧЕНИЕ

Беременность — это период физиологических изменений в организме матери, интенсивного роста и развития плода. Беременные и кормящие женщины являются наиболее уязвимой категорией населения в отношении дефицита микронутриентов в силу неадекватного экзогенного поступления питательных веществ, отсутствия знаний о важности разнообразия пищевого рациона, социоэкономических и генетических

Литература 25

факторов. Адекватное потребление макро- и микронутриентов способствует физиологическому течению процесса, в то время как недостаточное поступление микронутриентов, неправильное пищевое поведение повышают риски возникновения осложнений и неблагоприятных исходов. Поддержание адекватного микронутриентного статуса — одна из основных задач для сохранения здоровья женщины и формирования здорового потомства.

Наиболее оптимальной является стратегия индивидуальной саплементации с учетом анализа пищевого дневника, оценок индивидуальных рисков дефицита нутриентов, в том числе по железу, кальцию, омега-3 ПНЖК в дополнении к рекомендованному базовому назначению йода, витамина D и фолатов [9].

ЛИТЕРАТУРА

- 1. Lowensohn R.I., Stadler D.D., Naze C. Current concepts of maternal nutrition // Obstet. Gynecol. Surv. 2016. Vol. 71. N 7. P. 413–426.
- McKeating D.R., Fisher J.J., Perkins A.V. Elemental metabolomics and pregnancy outcomes // Nutrients. 2019. Vol. 11. N 1. P. 73. DOI https://doi.org/10.3390/ nu11010073
- Spencer B., Vanderlelie J., Perkins A. Essentiality of trace element micronutrition in human pregnancy: a systematic review // J. Pregnancy Child Health. 2015. Vol. 2. P. 2. DOI: https://doi.org/10.4172/2376-127X.1000157
- 4. Abu-Saad K., Fraser D. Maternal nutrition and birth outcomes // Epidemiol. Rev. 2010. Vol. 2. P. 5–25. DOI: https://doi.org/10.1093/epirev/mxq001
- 5. Махова А.А., Ших Е.В., Хайтович Е.Д. Микронутриентная поддержка: влияние на течение беременности и состав грудного молока // Вопросы гинекологии, акушерства и перинатологии. 2019. Т. 18. № 3. С. 114—123. DOI: https://doi.org/10.20953/1726-1678-2019-3-114-123
- 6. Ших Е.В., Махова А.А. Витамины в клинической практике / Под ред. акад. РАМН В.Г. Кукеса. Москва: Практическая медицина, 2014. 368 с.
- Darnton-Hill I., Mkparu U.C. Micronutrients in pregnancy in lowand middle-income countries // Nutrients. 2015. Vol. 2. P. 1744–1768. DOI: https://doi.org/10.3390/nu7031744
- 8. Shikh E.V., Makhova A.A. Correction of the vitamin-mineral status during pregnancy: reality and perspectives // Vopr. ginekol. akus. Perinatol. (Gynecology, Obstetrics and Perinatology). 2020. Vol. 19. N 3. P. 78–86. (In Russian.) DOI: https://doi.org/10.20953/1726-1678-2020-3-78-86
- Ших Е.В., Махова А.А. Эндемичность территории по дефициту микронутриентов как критерий формирования состава базового витаминноминерального комплекса для периконцепционального периода // Акушерство и гинекология. 2018. № 10.