Р.В. Петров Р.М. Хаитов

Иммуногены и вакцины нового поколения

Москва

УДК 616-097 ББК 52.6+53.53 П 30

Петров Рэм Викторович

Академик РАН, РАМН и РАСХН, профессор, Герой Социалистического Труда, лауреат Государственной премии и премии Правительства РФ, Почетный председатель Всероссийского научного общества иммунологов.

Хаитов Рахим Мусаевич

Академик РАН и РАМН, профессор, директор ГНЦ «Институт иммунологии» ФМБА России, лауреат Государственной премии и дважды лауреат премии Правительства РФ, президент Российской ассоциации аллергологов и иммунологов.

 $\it Hаучный$ $\it peдактор$ — д-р биол. наук, проф. $\it Mahsko$ $\it Buktop$ $\it Muxaйлович$ (ГНЦ «Институт иммунологии» $\it \Phi MbA$ России).

Иллюстративный материал — **Закурдаева Алла Юрьевна** (ГНЦ «Институт иммунологии» ФМБА России).

П 30 Петров Р.В., Хаитов Р.М.

Иммуногены и вакцины нового поколения. — М.: ГЭОТАР-Медиа, 2011. — 608 с.: ил. (Серия «Библиотека врача-специалиста»)

ISBN 978-5-9704-1868-0

Книга посвящена созданию эффективных иммуногенов и конструированию на их основе вакцин нового поколения с повышенными иммунизирующими свойствами против ряда актуальных инфекций (грипп, гепатиты, ВИЧ/СПИД, рак, туберкулез, сальмонеллез и др.), а также аллергий. Характеризуются очищенные фрагменты и эпитопы выделенных антигенов различных вирусов, бактерий и простейших, минимальная структура которых в сочетании с современными адъювантами обеспечивает развитие высокого иммунного ответа. Рассматриваются достижения в области создания ДНК- и других генетических вакцин, обратных вакцин, растительных рекомбинантных вакцин, терапевтических вакцин и вакцин против соматических (неинфекционных) болезней. Особое внимание уделяется конструированию нановакцин и созданию наноантител. Характеризуются внедренные в медицинскую практику полимерсубъединичные вакцины против гриппа, проходящие клинические испытания вакцина против ВИЧ/СПИДа и аллерготропины для специфической иммунотерапии аллергий. Анализируются результаты исследований по включению адъювантов с контролируемой структурой в состав создаваемых вакцин с целью повышения эффективности.

Книга предназначена для научных сотрудников, врачей, студентов, аспирантов, ординаторов и преподавателей в области иммунологии и смежных дисциплин — молекулярной биологии, микробиологии, биохимии, биофизики и др.

УДК 616-097 ББК 52.6+53.53

Права на данное издание принадлежат ООО Издательская группа «ГЭОТАР-Медиа». Воспроизведение и распространение в каком бы то ин было виде части или целого издания не могут быть осуществлены без письменного разрешения ООО Издательская группа «ГЭОТАР-Медиа».

[©] Петров Р.В., Хаитов Р.М., 2010

[©] ООО Издательская группа «ГЭОТАР-Медиа», 2010

[©] ООО Издательская группа «ГЭОТАР-Медиа», оформление, 2010

Глава 1

ЕСТЕСТВЕННЫЕ ЗАЩИТНЫЕ СИЛЫ ОРГАНИЗМА: «ВРОЖДЕННЫЙ ИММУНИТЕТ»

Органом иммунной системы является лимфоидная ткань, в которой главные клеточные популяции, участвующие в поддержании генетического постоянства внутренней среды организма, — фагоцитирующие, антигенпредставляющие клетки и иммунокомпетентные лимфоциты.

Иммунная защита, осуществляемая клетками системы иммунитета, включает два взаимосвязанных компонента. Более древний из них связан с воспалительной реакцией и реализуется на базе функционирования сенсорных и рецепторных структур, эволюционно отселекционированных для того, чтобы отличить вообще «чужое», в виде высококонсервативных молекул различных патогенов, отсутствующих у млекопитающих, от «своего» [453]. Эти реакции выполняются преимущественно макрофагами и дендритными клетками, осуществляющими главным образом антигенпредставляющие функции, и служат фундаментом, на котором развертываются более тонкие антигенспецифические процессы, осуществляемые лимфоидными клетками, способными обнаружить малейшие отличия в молекулярном строении различных антигенных структур, включая патогенные, от «своего». В соответствии с развивающимися процессами и функциями, выполняемыми этими защитными компонентами, первый из них обозначают как врожденный или естественный иммунитет (Innate immunity), второй — как адаптивный иммунитет (Adaptive immunity) или как иммунный ответ (Immune response).

В физиологических реакциях организма, направленных на поддержание генетического постоянства внутренней среды организма, важнейшую роль играют факторы естественной резистентности, действие которых направлено на защиту организма от вне- и внутриклеточных микроорганизмов и продуктов повреждения собственных клеток. Эти факторы включаются в защиту мгновенно после преодоления возбудителем кожных или слизистых оболочек и внедрения его во внутреннюю среду организма. Их влияние продолжается в течение

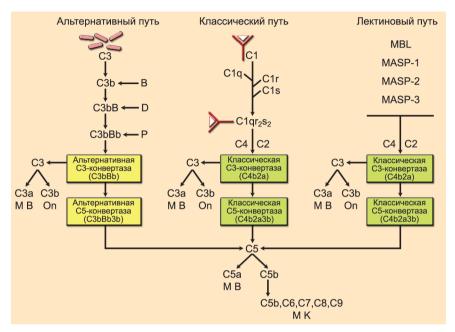
всего периода борьбы организма с инфекцией, но наиболее эффективно действие таких факторов развивается в течение первых 4 часов после внедрения микроба, когда они являются практически единственными защитниками организма.

На пути проникшего в организм микроба стоят две мощные преграды: клеточные (тканевые макрофаги, нейтрофилы, естественные киллерные клетки — ЕКК) и гуморальные (IgG-антитела, комплемент) факторы естественной резистентности. К факторам естественной резистентности относят также микробицидные экзосекреты (бактерицидные компоненты слюны, соляная кислота желудка, литические пищеварительные ферменты кишечника и др.), белки острой фазы и другие организменные структуры и субстанции.

1.1. ГУМОРАЛЬНЫЕ ФАКТОРЫ

Среди гуморальных факторов, участвующих в противомикробной защите, важная роль принадлежит системе комплемента, впрочем, так же как и в реализации отдельных эффекторных механизмов позднего иммунного ответа. Эта система включает около 30 взаимодействующих белков плазмы крови и рецепторов клеточной поверхности. В таблице 1 показаны основные компоненты системы комплемента, в таблице 2 — клеточные рецепторы для этих компонентов.

Функции системы комплемента многообразны. Ряд компонентов системы комплемента характеризуется ферментативными функциями (протеазы), другие выполняют иные функции: связываются с микробами и клеточными мембранами, с комплексами антиген—антитело, активируют тучные клетки, обеспечивают развитие сосудистых реакций воспаления, перфорацию мембран бактериальных клеток, опсонизируя микробы (связывание компонента системы с микробом и рецептором для компонента на клетке), активируют функции фагоцитов. В норме, при отсутствии распада собственных тканей и микробного заражения, система комплемента находится в покоящемся состоянии. Однако при запросе, вызванном определенными раздражителями, система комплемента активируется тремя возможными путями — классическим, альтернативным и лектиновым, что, по сути, представляет собой первую линию активной защиты против инфекции.


Таблица 1 Основные компоненты системы комплемента

Функции	Обозначения
Связывание с комплексом антиген-антитело	Clq
Связывание с мембраной бактерий и опсонизация к фагоцитозу	C4b
	C3b
Протеазы, активирующие другие компоненты системы путем	Clr
расщепления	C1s
	C2b
	Bb
	D
Медиаторы воспаления (дегрануляция тучных клеток,	C5a
сосудистые реакции)	C3a
	C4a
Комплекс белков атаки на мембрану (перфорация мембраны	C5b
клеток-мишеней)	C6
	C7
	C8
	C9
Комплементрегулирующие белки (ингибиторы активации,	Clinh
блокаторы активности)	C4bp
	CR1
	MCP
	DAF
	Фактор Н
	Фактор I
	Фактор Р
	CD59

Примечание: Clinh (от Cl-inhibitor) — ингибитор компонента Cl; MCP (от Membrane cofactor proteolysis) — мембранный кофактор протеолиза, белок, связывающий компонент C3b, что обеспечивает доступность компонента C3b для деградации протеазой — фактором I; DAF (от Decay accelerating factor) — фактор, усиливающий расшепление, белок мембраны клеток млекопитающих, ускоряющий деградацию (инактивацию) компонента C2b; Н — фактор Н —сывороточная протеаза, деградирующая компонент C3b; фактор I — протеаза, деградирующая компоненты C3b и C4b; фактор Р (пропердин) — стабилизатор активного комплекса C3b/Bb; CD59 — белок мембраны клеток млекопитающих, препятствующий лизису собственных клеток, вызванному комплементом.

Рецептор	Связываемый компонент	Экспрессия рецептора на клетках	Эффект связывания
	комплемента	тора на клетках	
CR1	C3b,	Моноциты,	Способствует разруше-
(CD35)	C4b,	макрофаги,	нию компонентов С3b и
	IC3b	нейтрофилы,	С4b. Опсонизированный
		эозинофилы,	фагоцитоз. Активация
		фолликулярные	В-лимфоцитов. Транспорт
		дендритные клет-	иммунных комплексов на
		ки, В-лимфоциты,	эритроцитах
		эритроциты	
CR2	C3d,	Фолликулярные	Компонент корецеп-
(CD21)	C3dg,	дендритные клет-	торного комплекса для
	C3bi,	ки. Зрелые В-лим-	антигена на В-лимфоци-
	EBV	фоциты	тах. Рецептор для вируса
			Эпштейна-Барр
CR3	C3bi	Моноциты,	Опсонизированный фаго-
(CD11b/		макрофаги,	цитоз. Нефагоцитируемое
CD18)		нейтрофилы,	связывание комплексов
		гранулоциты,	антиген-антитело на фол-
		фолликулярные	ликулярных дендритных
		дендритные клет-	клетках
		ки, ЕКК	
CR4	C3bi	Тканевые макро-	Опсонизированный фаго-
(CD11c/		фаги, дендритные	цитоз
CD18)		клетки	
ClqR	Clq	Макрофаги,	Связывание иммунных
	(коллагено-	моноциты, В-лим-	комплексов
	подобная	фоциты, тромбо-	
	часть)	циты, эндотелий	
Рецептор	C5a	Макрофаги, туч-	Активация макрофагов.
для С5а		ные клетки	Дегрануляция и активация
			тучных клеток

Примечание: CR — Complement receptor type 1, 2 и т.д.; EBV — вирус Эпштейна-Барр.

Рис. 1. Схема активации белков системы комплемента по классическому, альтернативному и лектиновому путям:

C1—C9 — компоненты системы комплемента; В — сывороточный фактор В; MB — медиатор воспаления (анафилатоксин); Оп — опсонин; МК — мембраноатакующий комплекс; MBL (Mannan-binding lectin) — маннансвязывающий лектин; MASP-1, -2, -3 (MBL-associated serine protease-1, -2, -3) — ассоциированная с MBL сериновая протеаза-1, -2, -3. Пояснения в тексте

Альтернативный путь активации системы комплемента (рис. 1) инициируется спонтанным расщеплением компонента СЗ или в результате его взаимодействия со специфическими сахарами на поверхности патогена. Этот способ самоактивации молекулы СЗ образно называют «заведенным мотором». Расщепление СЗ сопровождается образованием компонентов СЗа и СЗb. Молекула СЗb выполняет функции опсонина и, будучи ковалентно связанной с микробом, нековалентно связывает сывороточный фактор В, который становится субстратом для сериновой протеазы — белка D системы комплемента. Фактор D расщепляет фактор В на фрагменты Ва и Вb. Фактор Вb остается связанным с компонентом СЗb на поверхности микроба и образует активный ком-

плекс С3bBb, в котором фрагмент Вb является активной протеазой, а сам комплекс C3bBb представляет собой C3-конвертазу альтернативного пути, гомологичную C3-конвертазе (C4b2a) классического пути активации системы комплемента. Комплекс C3bBb стабилизируется на мембране сывороточным белком Р (пропердин). Это приводит к массивной наработке компонента С3b, связывающегося с микробом и вновь воспроизводящего указанный путь активации системы. Более того, комплекс С3bBb, присоединяя молекулу С3b (формируется комплекс С3bBb3b), является активной С5-конвертазой, обеспечивающей расщепление компонента С5 до фрагментов С5а и С5b. Следует отметить, что фрагмент С5а, как и фрагмент С3а, является анафилатоксином — активирует тучные клетки (секрецию содержимого гранул) и гладкие мышцы (сокращение). Кроме того, фрагмент С5а активирует моноциты и нейтрофилы, а также экспрессию на фагоцитах рецепторов для компонентов комплемента — CR1 и CR3. Под влиянием фрагмента C5b в реакцию вступают компоненты комплемента C6, C7, С8 и С9. Реакция завершается образованием мембраноатакующего комплекса С5b, С6, С7, С8, С9, перфорирующего мембрану микроба и вызывающего его лизис. Заключительные этапы активации системы протекают следующим образом: молекула С5b связывает компонент С6, комплекс С5b6 присоединяет компонент С7. Через гидрофобный домен компонента C7 комплекс C5b67 встраивается в фосфолипидный бислой микроба. К комплексу С5b67 гидрофобными доменами пристраиваются компоненты С8 и С9. Фрагмент С8в компонента С8 присоединяется к молекуле C5b, а фрагмент С8αγ встраивается в фосфолипидный бислой клетки-мишени. При этом фрагмент С8 су катализирует 10-16 молекул C9, в результате чего образующийся полимер формирует неспадающиеся поры в микробной мембране.

Классический путь активации системы комплемента (см. рис. 1) инициируется комплексом антиген-антитело (IgM, IgG), который связывает фрагмент C1q компонента C1 на поверхности микроба, но не в растворе. Компонент C1 состоит из восьми фрагментов — C1r, C1s и шести молекул C1q, процесс активации индуцируется присоединением не менее двух молекул C1q к Fc-фрагментам иммуноглобулина комплекса антиген—антитело и активацией протеазы C1r, отщепляющей от компонента C1 сериновую протеазу C1s. Эти ранние этапы активации системы комплемента сопровождаются образованием активного комплекса антиген—антитело—C1qr₂S₂, сериновая протеаза которого расшепляет компонент системы комплемента C4