ЧАСТЬ 1

основы жизнедеятельности

Глава 1

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ. ОСНОВЫ РАЦИОНАЛЬНОГО ПИТАНИЯ

Существенный признак жизни — непрерывный обмен веществ и энергии, который протекает внутри организма, между организмом и внешней средой. Обмен веществ — основа постоянного обновления клеточных структур, синтеза и разрушения химических соединений в организме. Источник, обеспечивающий его пластические и энергетические потребности, — питательные вещества, богатые энергией, витамины, микроэлементы, клетчатка и вода, которые поступают в организм с пищей. Энергия, освобождающаяся при расщеплении питательных веществ, превращается в тепловую, механическую и частично электрическую энергию. Эта энергия и компоненты питательных веществ непрерывно расходуются при синтезе различных соединений, необходимых для восстановления и обновления клеточных и тканевых структур, ресинтезе биологически и физиологически активных веществ, при мышечной работе, дыхании, пищеварении, кровообращении и поддержании мембранных потенциалов. Превращение веществ в организме с момента поступления их в клетки до образования конечных продуктов обмена есть процесс метаболизма, который включает два взаимосвязанных и взаимозависимых процесса — анаболизм и катаболизм.

Анаболизм, в основе которого лежат процессы ассимиляции органических веществ, объединяет биосинтез структурных компонентов клетки, ткани и органа, синтез и накопление энергии. При этом происходит рост и развитие тканей и органов, обновляются клеточные элементы, обеспечивается накопление энергоемких субстратов.

Катаболизм, основу которого составляют процессы диссимиляции, связан с расщеплением сложных структур клеток, тканей и органов до простых веществ: воды, углекислого газа, аммиака. В результате образуется энергия, необходимая для жизнедеятельности организма.

Процессы анаболизма и катаболизма находятся в динамическом равновесии, которое изменяется при некоторых состояниях. Преоб-

ладание ассимиляции сопровождается ростом тканей, накоплением массы тела, резервных сил организма. Такая необходимость возникает в период восстановления после инфекционных и других заболеваний, при беременности, в детском возрасте. При старении организма, длительных физических или психоэмоциональных нагрузках, в период развития инфекционного заболевания преобладают процессы катаболизма (диссимиляции), сопровождаемые потерей энергии.

ОБМЕН БЕЛКОВ

Белки — вещества, состоящие из аминокислот; они составляют основу всех тканевых элементов организма. На их долю приходится 50% сухого остатка клетки. Белки используются при синтезе соединений, необходимых для жизнедеятельности организма и построения его структур: мышц, ферментов, белков плазмы крови и т.д. Интенсивность обмена белков в организме чрезвычайно велика. Например, половина всех белков клеток печени обновляется за одну неделю. Большая скорость обновления характерна для эпителия слизистой оболочки кишечника, клеток крови; медленнее обновляются белки клеток мозга, сердца, половых желез. С наименьшей скоростью обновляются белки мышц, кожи и опорных тканей. Азот, необходимый для структуры организма, усваивается только в форме аминокислот. Из 20 аминокислот, входящих в состав белков, 12 аминокислот синтезируются в организме — заменимые аминокислотыя, 8 аминокислот не синтезируются — незаменимые аминокислотыя.

ОБМЕН ЖИРОВ

Жиры (липиды) — нерастворимые в воде органические соединения, входящие в состав всех клеток организма. Они состоят из смеси различных триглицеридов (эфиры глицерина) и трех жирных кислот. Различают насыщенные и ненасыщенные жирные кислоты. Некоторые ненасыщенные жирные кислоты не синтезируются в организме — незаменимые жирные кислоты.

Значимость липидов определяется их функциями.

• Липиды — структурные компоненты клеточных мембран и некоторых тканевых структур; особенно велика здесь роль незаменимых жирных кислот, необходимых для синтеза фосфолипидов — структурных компонентов мембран и митохондрий.

- При расщеплении липиды служат источником энергии: их теплотворная способность более чем в 2 раза превышает таковую углеводов и белков.
- Липиды источник тканевых гормонов: простагландинов и тахикининов.
- Липиды служат растворителем для витаминов.
- Жир защищает внутренние органы от механических повреждений.
- Липиды участвуют в процессах терморегуляции.

Большая часть жиров находится в организме в жировой ткани, меньшая часть входит в состав клеточных структур. Общий объем жира в организме колеблется в широких пределах и в среднем составляет 10—20% массы тела, при патологическом ожирении достигает 50% массы тела.

Жиры входят в состав всех пищевых продуктов животного происхождения. Растительные жиры отличаются от большинства животных жиров высоким содержанием ненасыщенных жирных кислот.

Один из компонентов животных жиров — холестерин, который выполняет две главные функции: структурную и метаболическую. Структурная функция: холестерин входит в состав клеточных мембран, влияет на их физико-химические свойства, регулирует проницаемость и активность мембранных ферментов. Метаболическая функция обусловлена участием холестерина в синтезе половых гормонов и гормонов коры надпочечников, синтезе желчи, витаминов группы D, липопротеинов. Источник холестерина — пища, эндогенный его синтез в печени и частично в кишечнике. Содержание холестерина в крови у взрослых — 3.9-6.48 ммоль/л, по некоторым данным — менее 5.2 ммоль/л (144—250 мг%). Высокий уровень холестерина в крови — гиперхолестеринемия — статистически достоверно сочетается с высокой частотой возникновения атеросклероза, инфаркта миокарда и инсульта, сокращая продолжительность жизни человека. Насыщенные жирные кислоты пищевых продуктов увеличивают, а полиненасыщенные снижают уровень холестерина в крови.

Жировой обмен регулируется нервными и гуморальными механизмами. Прямое симпатическое влияние усиливает распад жира; стимуляция парасимпатических нервов приводит к повышенному отложению жира.

Влияние на жировой обмен оказывает ряд гормонов. Так, адреналин и норадреналин способствуют мобилизации жира из жировых депо и

поступлению его в кровь. Выраженное жиромобилизующее действие этих гормонов наблюдают при стрессовых состояниях. Аналогичным свойством обладает тироксин и соматотропный гормон. Глюкокортикоиды и инсулин тормозят мобилизацию жира.

ОБМЕН УГЛЕВОДОВ

Углеводы составляют около 2% сухого остатка тканей. Однако их пластическая роль велика. Многие из них входят в состав соединений, играющих важную роль в передаче наследственной информации. Углеводы, входящие в состав оболочки эритроцита, определяют группу крови; входя в состав гликопротеидов (фибриноген, протромбин), участвуют в свертывании крови. Углеводные компоненты входят в состав некоторых гормонов (тиреоглобулин), рецепторных образований клеточных мембран. Углеводы участвуют и в образовании жирных кислот.

Углеводы играют существенную роль как источник энергии. При физических и эмоциональных нагрузках глюкоза быстро извлекается из депо и обеспечивает экстренную мобилизацию энергетических ресурсов. Основной резервный запас углеводов содержится в печени в виде гликогена. Около 1-2% гликогена содержится в мышцах. Уровень глюкозы в крови — важнейшая **гомеостатическая константа**. В норме содержание глюкозы в плазме крови — 4,22-6,11 ммоль/л, в цельной капиллярной крови — 3,88-5,55 ммоль/л (60-100 мг%).

ОБМЕН МИНЕРАЛЬНЫХ ВЕЩЕСТВ И ВОДЫ

Вода у взрослого человека составляет 60—70% массы тела. Основная ее часть (около 71%) входит в состав протоплазмы клеток — внутриклеточная вода. Внеклеточная вода (около 21%) входит в состав тканевой или интерстициальной жидкости, вода плазмы крови составляет 8%. Вода — среда, в которой происходит обмен веществ в клетках, органах и тканях. Поступление воды в организм регулируется его потребностью, на основе которой возникает мотивация жажды.

Минеральные соли относятся к числу пищевых продуктов. Несмотря на то что они не обладают питательной ценностью, они необходимы организму как вещества, участвующие в обмене веществ. На значение минеральных веществ обратил внимание в конце XIX в. русский ученый Н.И. Лунин. У мышей, получавших пищу без солей, он наблюдал выраженные нарушения в организме вплоть до гибели животных.

В состав тканей организма входят почти все элементы, встречающиеся в природе. Одни из них — макроэлементы — содержатся в тканях в значительном количестве (10^{-2} — 10^{-3}), другие — mukpoэлементы — находятся в очень небольшом количестве (10^{-6} — 10^{-12}). Первые играют роль пластического материала в построении тканей, создают оптимальные физико-химические условия для физиологических процессов. Вторые, наряду с ферментами, гормонами, витаминами, принимают участие в обмене веществ в качестве биологических катализаторов химических реакций в тканях и средах организма.

Кальцию принадлежит важная роль в биологических процессах организма. Присутствуя в крови в определенном количестве, кальций регулирует возбудимость клеток центральной нервной системы (ЦНС), участвует в передаче нервных импульсов, обеспечивает мышечное сокращение, играет важную роль в свертывании крови. Кальций необходим для секреторной активности практически всех эндо- и экзокринных желез. Ионы кальция — вторичные посредники внутриклеточных биохимических реакций.

Помимо выполнения регуляторной функции, кальций — основной компонент скелета и зубов, присутствующий в костной ткани в виде карбонатных и фосфатных солей. Содержание кальция в плазме крови — 2,3-2,7 ммоль/л (8,5-10,3мг%). Немногим более половины этого количества находится в ионизированном состоянии (1,05-1,3 ммоль/л), остальная его часть связана с белками и анионами органических кислот, например с цитратом.

Содержание кальция в плазме крови регулируется с высокой точностью. Изменение его всего на 1% приводит в действие гомеостатические механизмы, восстанавливающие равновесие.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ВИТАМИНОВ

Витамины — составная часть ферментов, участвующих в биохимических процессах в клетках. При недостатке или отсутствии витаминов в пище соответствующие ферменты не образуются и обмен веществ нарушается. Известно более 20 водорастворимых и жирорастворимых витаминов.

Жирорастворимые витамины участвуют в обменных процессах, повышают устойчивость организма к неблагоприятным факторам. Например, витамин Q (убихинон) усиливает биологическое окисление, витамин К повышает свертываемость крови, витамин А улучшает

остроту зрения, витамин D способствует отложению солей кальция и фосфора в костях, витамин E способствует трофике мышечной ткани, витамин F препятствует развитию атеросклероза.

Водорастворимые витамины способствуют выполнению функций нервной ткани (витамин B_6), участвуют в биологическом окислении (витамин B_2 , PP), обмене и синтезе аминокислот (B_6), нуклеиновых кислот (B_{12}), синтезе жиров и жироподобных веществ.

При отсутствии какого-либо витамина или его предшественника возникает патологическое состояние — *авитаминоз*; в менее выраженной форме его наблюдают при недостатке витамина — *гиповитаминоз*.

Недостаточность витаминов возникает либо при нарушении их всасывания в желудочно-кишечном тракте, либо в результате несбалансированного, малокалорийного рациона, при питании преимущественно консервами, продуктами, подвергшимися копчению либо длительной тепловой обработке. При достаточно калорийном питании гиповитаминоз появляется при однообразии рациона.

ОБМЕН ЭНЕРГИИ

Для обеспечения нормальных условий жизнедеятельности человека важно соответствие количества энергии, которое он расходует, количеству энергии, которое он восполняет.

Общее количество энергии не зависит от промежуточных стадий ее превращения, а определяется только начальным и конечным состоянием химической системы. Общие энергетические затраты организма можно определить по количеству тепла, выделенного организмом во внешнюю среду. Освобождающаяся при этом энергия выражается в единицах тепла — калориях; методы определения количества образовавшейся энергии в организме называются калориметрическими. Основная единица энергии — джоуль (Дж); 1 ккал равна 4,19 кДж.

Существует прямая и непрямая (косвенная) калориметрия.

Прямая калориметрия — метод определения энергетических затрат организма по количеству выделенного им тепла. Прямую калориметрию проводят в камере-биокалориметре, где поддерживают постоянный газовый состав, влажность и давление. В камере по трубам циркулирует вода, которая нагревается теплом, выделяемым находящимся в камере человеком. Общее количество выделенного организмом тепла рассчитывают по объему протекающей воды и изменению ее температуры. Более широкое распространение получил метод непрямой калориметрии.

Существует несколько видов непрямой калориметрии.

- Непрямая калориметрия основана на учете теплотворной способности питательных веществ. Теплотворную способность, или калорическую ценность, питательных веществ определяют при сжигании 1 г вещества в специальном калориметре («бомба» Бертло) путем пропускания электрического тока. Калориметр погружается в воду. О количестве выделившегося тепла судят по изменению температуры воды. Калорическая ценность 1 г белка 4,1 ккал (17,17 кДж), 1 г жира 9,3 ккал (38,96 кДж), 1 г углеводов 4,1 ккал (17,17 кДж). В организме эти вещества не сгорают, а медленно окисляются, но конечный эффект тот же. Зная количество принятых питательных веществ и их калорическую ценность, можно рассчитать количество энергии, выделившейся в организме.
- Непрямая калориметрия основана на данных газового анализа. Окисление питательных веществ сопровождается потреблением определенного объема кислорода и выделением соответствующего объема углекислого газа за один и тот же промежуток времени. При этом выделяется тепло. Соотношение между объемом углекислого газа, выделившегося в процессе окисления, и объемом кислорода, затраченного на окисление, дыхательный коэффициент, который при окислении белков равен 0,8, окислении жиров 0,7, окислении углеводов 1,0. Таким образом, по величине дыхательного коэффициента судят о том, какие вещества преимущественно окисляются в организме. При питании смешанной пищей дыхательный коэффициент равен 0,85—0,9.

Экспериментальными исследованиями установлено, что каждому значению дыхательного коэффициента соответствует определенный **калорический эквивалент кислорода** — количество тепла, освобождаемое при полном окислении какого-либо вещества до углекислого газа и воды в 1 л кислорода (табл 1.1).

Таблица 1.1. Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Калорический эквивалент кислорода	Дыхательный коэффициент						
	0,70	0,75	0,80	0,85	0,90	0,95	1,0
кДж	19,619	19,841	20,101	20,456	20,616	20,871	21,173
ккал	4,686	4,739	4,801	4,862	4,924	4,985	5,057

Калорический эквивалент кислорода при питании смешанной пищей составляет 4,8 ккал (20,1 кДж): при полном сгорании пищевых веществ в атмосфере 1 л кислорода выделяется 4,8 ккал (20,1 кДж).

Определив реальный объем кислорода, потребленный организмом, рассчитывают энергетические затраты.

Интенсивность обменных процессов и превращения энергии зависит от индивидуальных особенностей организма: пола, возраста, массы тела и роста, условий и характера питания, физической нагрузки, состояния эндокринных желез, нервной системы и внутренних органов. Существенно влияют и условия внешней среды: температура, давление, влажность воздуха. Минимальные для бодрствующего организма затраты энергии, определенные в строгих стандартных условиях, характеризуют основной обмен. Энергия основного обмена необходима для поддержания жизнедеятельности организма, обеспечивает функции системы кровообращения, дыхания, выделения, работу мозга и других внутренних органов.

Исследование основного обмена проводят:

- в положении лежа при полном мышечном и эмоциональном покое, так как мышечное и эмоциональное напряжение значительно повышают энергозатраты;
- натощак: через 14—16 ч после приема пищи, для исключения ее специфического динамического действия увеличения основного обмена после приема пищи; потребление белковой пищи увеличивает основной обмен в среднем на 30%, жирной и углеводной на 14—15%; эффект наступает примерно через 1 ч после приема пищи и сохраняется несколько часов;
- при температуре воздуха 18—20 °C; температура выше или ниже этих цифр может значительно изменить энергозатраты;
- при исключении в течение 3 сут перед исследованием приема белковой пищи.

На основании многочисленных экспериментальных исследований основного обмена у здоровых людей обоего пола, разных массы тела, роста и возраста отдельно для мужчин и женщин составлены таблицы, по которым можно рассчитать величину основного обмена.

В среднем величина основного обмена составляет 1 ккал в 1 ч на 1 кг массы тела. У мужчин в сутки основной обмен примерно 1700 ккал, у женщин на 10% меньше.

Суточный расход энергии у здорового человека — **рабочий обмен** — значительно превышает величину основного обмена. Он складывается из:

- основного обмена:
- рабочей прибавки энергозатраты, связанные с движением и выполнением той или иной работы;
- специфического динамического действия пищи.

Основы рационального питания

Любому живому организму необходима пища — исходный материал для создания и обновления ткани и источник энергии. Питание человека должно быть рациональным, точно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде. Оно обеспечивает нормальную работу организма, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие детского организма.

Основа рационального питания — сбалансированность — оптимальное соотношение компонентов пищи: аминокислот, полиненасыщенных жирных кислот, фосфатидов, стеринов, сахаров, органических кислот.

Рациональный подход к организации питания предполагает соблюдение принципов **пищевого рациона** — количества и состава продуктов питания, необходимых человеку в сутки.

- Калорийность рациона должна восполнять энергетические затраты организма, которые определяются видом трудовой деятельности. В соответствии с величиной энергозатрат выделяют пять групп трудоспособного населения среди мужчин и четыре группы среди женщин. Это разделение по группам основано на физиолого-биохимических особенностях организма мужчин и женщин и осуществляется по величине основного обмена с учетом коэффициента физической активности (КФА) в соответствии с рекомендациями комитета экспертов ВОЗ 1985 г. КФА отношение суточных энергозатрат к величине основного обмена. Если энергозатраты на все виды жизнедеятельности в 2 раза выше величины основного обмена, КФА равен 2. Чем больше энергозатраты, тем больше КФА. Работники, занятые преимущественно умственным трудом, в сутки расходуют 9799—10 265 кДж (2100—2450 ккал) при КФА 1,4.
- Рацион составляют с учетом калорической ценности питательных вешеств.
- Возможно использование закона изодинамии питательных веществ взаимозаменяемость белков, жиров и углеводов на основе энергетической ценности питательных веществ. Например, 1 г жира, высвобождающий при окислении 9,3 ккал, можно заменить 2,3 г белка или углеводов. Однако такая замена возможна только на короткое время, так как питательные вещества выполняют не только энергетическую, но и пластическую функцию.

- В пищевом рационе необходимо оптимальное для группы работников содержание белков, жиров и углеводов. Например, для работников первой группы в суточном рационе должно быть не менее 70 г белков, 80 г жиров и 400 г углеводов. Особое значение имеет содержание белков в суточном рационе. О достаточности или недостаточности белков судят по азотистому балансу соответствие количества азота, вводимого с пищей, количеству азота, выводимого из организма. В норме существует азотистое равновесие состояние, при котором количество азота, вводимого в организм, равно его количеству, выводимому из организма.
- Количество белков, жиров и углеводов должно содержаться в соотношении 1:1:4.
- Необходимо полное удовлетворение потребности организма в витаминах, минеральных веществах и солях.
- Пища должна содержать полноценные и неполноценные белки; рекомендуют включать одну треть суточной нормы белков и жиров животного происхождения.
- Необходим учет степени усвоения различных питательных веществ, потребления достаточного объема воды с учетом ее суточной экскреции, объема пищи; от наличия в ней растительных волокон зависят чувство насыщения, моторная функция желудочнокишечного тракта.
- Лучшее усвоение питательных веществ обеспечивается правильным режимом питания.
- Внешний вид пищи, ее запах, обстановка приема пищи, вкус имеют большое значение для условно-рефлекторной регуляции функций желудочно-кишечного тракта.

Вопросы для самоконтроля

- Что является существенным признаком жизни?
- Какие конечные продукты образуются в результате обмена углеводов, жиров и белков?
- Характеристика основного обмена.
- Методы определения основного обмена.
- Основные принципы организации рационального питания.